首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The GluN2 subunits that compose NMDA receptors (NMDARs) determine functional and pharmacological properties of the receptor. In the striatum, functions and potential dysfunctions of NMDARs attributed to specific GluN2 subunits have not been clearly elucidated, although NMDARs play critical roles in the interactions between glutamate and dopamine. Through the use of amperometry and field potential recordings in mouse brain slices, we found that NMDARs that contain the GluN2D subunit contribute to NMDA‐induced inhibition of evoked dopamine release and of glutamatergic neurotransmission in the striatum of control mice. Inhibition is likely mediated through increased firing in cholinergic interneurons, which were shown to express GluN2D. Indeed, NMDA‐induced inhibition of both dopamine release and glutamatergic neurotransmission is reduced in the presence of muscarinic receptor antagonists and is mimicked by a muscarinic receptor agonist. We have also examined whether this function of GluN2D‐containing NMDARs is altered in a mouse model of Parkinson's disease. We found that the inhibitory role of GluN2D‐containing NMDARs on glutamatergic neurotransmission is impaired in the 6‐hydroxydopamine lesioned striatum. These results identify a role for GluN2D‐containing NMDARs and adaptive changes in experimental Parkinsonism. GluN2D might constitute an attractive target for the development of novel pharmacological tools for therapeutic intervention in Parkinson's disease.

  相似文献   


2.
(R)‐3‐[2,6‐cis‐Di(4‐methoxyphenethyl)piperidin‐1‐yl]propane‐1,2‐diol (GZ‐793A) inhibits methamphetamine‐evoked dopamine release from striatal slices and methamphetamine self‐administration in rats. GZ‐793A potently and selectively inhibits dopamine uptake at the vesicular monoamine transporter‐2 (VMAT2). This study determined GZ‐793A's ability to evoke [3H]dopamine release and inhibit methamphetamine‐evoked [3H]dopamine release from isolated striatal synaptic vesicles. Results show GZ‐793A concentration‐dependent [3H]dopamine release; nonlinear regression revealed a two‐site model of interaction with VMAT2 (High‐ and Low‐EC50 = 15.5 nM and 29.3 μM, respectively). Tetrabenazine and reserpine completely inhibited GZ‐793A‐evoked [3H]dopamine release, however, only at the High‐affinity site. Low concentrations of GZ‐793A that interact with the extravesicular dopamine uptake site and the High‐affinity intravesicular DA release site also inhibited methamphetamine‐evoked [3H]dopamine release from synaptic vesicles. A rightward shift in the methamphetamine concentration‐response was evident with increasing concentrations of GZ‐793A, and the Schild regression slope was 0.49 ± 0.08, consistent with surmountable allosteric inhibition. These results support a hypothetical model of GZ‐793A interaction at more than one site on the VMAT2 protein, which explains its potent inhibition of dopamine uptake, dopamine release via a High‐affinity tetrabenazine‐ and reserpine‐sensitive site, dopamine release via a Low‐affinity tetrabenazine‐ and reserpine‐insensitive site, and a low‐affinity interaction with the dihydrotetrabenazine binding site on VMAT2. GZ‐793A inhibition of the effects of methamphetamine supports its potential as a therapeutic agent for the treatment of methamphetamine abuse.

  相似文献   


3.
Dopaminergic signaling pathways are conserved between mammals and Drosophila, but the factors important for maintaining the functional pool of synaptic dopamine are not fully understood in Drosophila. In this study, we characterized the releasable and reserve dopamine pools in Drosophila larvae using ATP/P2X2‐mediated stimulation. Dopamine release was stable with stimulations performed at least every 5 min but decayed with stimulations performed 2 min apart or less, indicating the replenishment of the releasable pool occurred on a time scale between 2 and 5 min. Dopamine synthesis or uptake was pharmacologically inhibited with 3‐iodotyrosine and cocaine, respectively, to evaluate their contributions to maintain the releasable dopamine pool. We found that both synthesis and uptake were needed to maintain the releasable dopamine pool, with synthesis playing a major part in long‐term replenishment and uptake being more important for short‐term replenishment. These effects of synthesis and uptake on different time scales in Drosophila are analogous to mammals. However, unlike in mammals, cocaine did not activate a reserve pool of dopamine in Drosophila when using P2X2 stimulations. Our study shows that both synthesis and uptake replenish the releasable pool, providing a better understanding of dopamine regulation in Drosophila.

  相似文献   


4.
Cocaine is a recreational drug of abuse that binds to the dopamine transporter, preventing reuptake of dopamine into pre‐synaptic terminals. The increased presence of synaptic dopamine results in stimulation of both pre‐ and post‐synaptic dopamine receptors, considered an important mechanism by which cocaine elicits its reinforcing properties. However, the effects of acute cocaine administration on pre‐synaptic dopamine function remain unclear. Non‐invasive imaging techniques such as positron emission tomography have revealed impaired pre‐synaptic dopamine function in chronic cocaine users. Similar impairments have been seen in animal studies, with microdialysis experiments indicating decreased basal dopamine release. Here we use micro positron emission tomography imaging techniques in mice to measure dopamine synthesis capacity and determine the effect of acute cocaine administration of pre‐synaptic dopamine function. We show that a dose of 20 mg/kg cocaine is sufficient to elicit hyperlocomotor activity, peaking 15–20 min post treatment (p < 0.001). However, dopamine synthesis capacity in the striatum was not significantly altered by acute cocaine treatment (: 0.0097 per min vs. 0.0112 per min in vehicle controls, p > 0.05). Furthermore, expression levels of two key enzymes related to dopamine synthesis, tyrosine hydroxylase and aromatic l ‐amino acid decarboxylase, within the striatum of scanned mice were not significantly affected by acute cocaine pre‐treatment (p > 0.05). Our findings suggest that while the regulation of dopamine synthesis and release in the striatum have been shown to change with chronic cocaine use, leading to a reduced basal tone, these adaptations to pre‐synaptic dopaminergic neurons are not initiated following a single exposure to the drug.

  相似文献   

5.
The nucleus accumbens is highly heterogeneous, integrating regionally distinct afferent projections and accumbal interneurons, resulting in diverse local microenvironments. Dopamine (DA) neuron terminals similarly express a heterogeneous collection of terminal receptors that modulate DA signaling. Cyclic voltammetry is often used to probe DA terminal dynamics in brain slice preparations; however, this method traditionally requires electrical stimulation to induce DA release. Electrical stimulation excites all of the neuronal processes in the stimulation field, potentially introducing simultaneous, multi‐synaptic modulation of DA terminal release. We used optogenetics to selectively stimulate DA terminals and used voltammetry to compare DA responses from electrical and optical stimulation of the same area of tissue around a recording electrode. We found that with multiple pulse stimulation trains, optically stimulated DA release increasingly exceeded that of electrical stimulation. Furthermore, electrical stimulation produced inhibition of DA release across longer duration stimulations. The GABAB antagonist, CGP 55845, increased electrically stimulated DA release significantly more than light stimulated release. The nicotinic acetylcholine receptor antagonist, dihydro‐β‐erythroidine hydrobromide, inhibited single pulse electrically stimulated DA release while having no effect on optically stimulated DA release. Our results demonstrate that electrical stimulation introduces local multi‐synaptic modulation of DA release that is absent with optogenetically targeted stimulation.

  相似文献   


6.
The psychostimulant amphetamine (AMPH) is frequently used to increase catecholamine levels in attention disorders and positron emission tomography imaging studies. Despite the fact that most radiotracers for positron emission tomography studies are characterized in non‐human primates (NHPs), data on regional differences of the effect of AMPH in NHPs are very limited. This study examined the impact of AMPH on extracellular dopamine (DA) levels in the medial prefrontal cortex and the caudate of NHPs using microdialysis. In addition to differences in magnitude, we observed striking differences in the temporal profile of extracellular DA levels between these regions that can likely be attributed to differences in the regulation of dopamine uptake and biosynthesis. The present data suggest that cortical DA levels may remain elevated longer than in the caudate which may contribute to the clinical profile of the actions of AMPH.

  相似文献   


7.
Mephedrone (4‐methylmethcathinone) is a synthetic cathinone designer drug that alters pre‐synaptic dopamine (DA) activity like many psychostimulants. However, little is known about the post‐synaptic dopaminergic impacts of mephedrone. The neuropeptide neurotensin (NT) provides inhibitory feedback for basal ganglia and limbic DA pathways, and post‐synaptic D1‐like and D2‐like receptor activity affects NT tissue levels. This study evaluated how mephedrone alters basal ganglia and limbic system NT content and the role of NT receptor activation in drug consumption behavior. Four 25 mg/kg injections of mephedrone increased NT content in basal ganglia (striatum, substantia nigra and globus pallidus) and the limbic regions (nucleus accumbens core), while a lower dosage (5 mg/kg/injection) only increased striatal NT content. Mephedrone‐induced increases in basal ganglia NT levels were mediated by D1‐like receptors in the striatum and the substantia nigra by both D1‐like and D2‐like receptors in the globus pallidus. Mephedrone increased substance P content, another neuropeptide, in the globus pallidus, but not in the dorsal striatum or substantia nigra. Finally, the NT receptor agonist PD149163 blocked mephedrone self‐administration, suggesting reduced NT release, as indicated by increased tissue levels, likely contributing to patterns of mephedrone consumption.

  相似文献   


8.
The administration of pan histone deacetylase (HDAC) inhibitors reduces ischemic damage to the CNS, both in vitro and in animal models of stroke, via mechanisms which we are beginning to understand. The acetylation of p53 is regulated by Class I HDACs and, because p53 appears to play a role in ischemic pathology, the purpose of this study was to discover, using an in vitro white matter ischemia model and an in vivo cerebral ischemia model, if neuroprotection mediated by HDAC inhibition depended on p53 expression. Optic nerves were excised from wild‐type and p53‐deficient mice, and then subjected to oxygen–glucose deprivation in the presence and absence of a specific inhibitor of Class I HDACs (MS‐275, entinostat) while compound action potentials were recorded. Furthermore, transient focal ischemia was imposed on wild‐type and p53‐deficient mice, which were subsequently treated with MS‐275. Interestingly, and in both scenarios, the beneficial effects of MS‐275 were most pronounced when p53 was absent. These results suggest that modulation of p53 activity is not responsible for MS‐275‐mediated neuroprotection, and further illustrate how HDAC inhibitors variably influence p53 and associated apoptotic pathways.

  相似文献   


9.
10.
Drugs of abuse modulate the function and activity of the mesolimbic dopamine circuit. To identify novel mediators of drug‐induced neuroadaptations in the ventral tegmental area (VTA), we performed RNA sequencing analysis on VTA samples from mice administered repeated saline, morphine, or cocaine injections. One gene that was similarly up‐regulated by both drugs was serum‐ and glucocorticoid‐inducible kinase 1 (SGK1). SGK1 activity, as measured by phosphorylation of its substrate N‐myc downstream regulated gene (NDRG), was also increased robustly by chronic drug treatment. Increased NDRG phosphorylation was evident 1 but not 24 h after the last drug injection. SGK1 phosphorylation itself was similarly modulated. To determine the role of increased SGK1 activity on drug‐related behaviors, we over‐expressed constitutively active (CA) SGK1 in the VTA. SGK1‐CA expression reduced locomotor sensitization elicited by repeated cocaine, but surprisingly had the opposite effect and promoted locomotor sensitization to morphine, without affecting the initial locomotor responses to either drug. SGK1‐CA expression did not significantly affect morphine or cocaine conditioned place preference, although there was a trend toward increased conditioned place preference with both drugs. Further characterizing the role of this kinase in drug‐induced changes in VTA may lead to improved understanding of neuroadaptations critical to drug dependence and addiction.

  相似文献   


11.
The β‐amyloid precursor protein (APP) has been extensively studied for its role as the precursor of the β‐amyloid protein (Aβ) of Alzheimer's disease. However, the normal function of APP remains largely unknown. This article reviews studies on the structure, expression and post‐translational processing of APP, as well as studies on the effects of APP in vitro and in vivo. We conclude that the published data provide strong evidence that APP has a trophic function. APP is likely to be involved in neural stem cell development, neuronal survival, neurite outgrowth and neurorepair. However, the mechanisms by which APP exerts its actions remain to be elucidated. The available evidence suggests that APP interacts both intracellularly and extracellularly to regulate various signal transduction mechanisms.

  相似文献   


12.
Epidemiological studies have indicated an inverse association between high uricemia and incidence of Parkinson's disease (PD). To investigate the link between endogenous urate and neurotoxic changes involving the dopaminergic nigrostriatal system, this study evaluated the modifications in the striatal urate levels in two models of PD. To this end, a partial dopaminergic degeneration was induced by 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP) in mice, while a severe dopaminergic degeneration was elicited by unilateral medial forebrain bundle infusion of 6‐hydroxydopamine (6‐OHDA) in rats. Urate levels were measured by in vivo microdialysis at 7 or 14 days from toxin exposure. The results obtained demonstrated higher urate levels in the dopamine‐denervated striatum of 6‐OHDA‐lesioned rats compared with the intact striatum. Moreover, an inverse correlation between urate and dopamine levels was observed in the same area. In contrast, only a trend to significant increase in striatal urate was observed in MPTP‐treated mice. These results demonstrate that a damage to the dopaminergic nigrostriatal system elevates the striatal levels of urate, and suggest that this could be an endogenous compensatory mechanism to attenuate dopaminergic neurodegeneration. This finding may be important in light of the epidemiological and preclinical evidences that indicate a link between urate and development of PD.

  相似文献   


13.
It has been proposed that GM1 ganglioside promotes neuronal growth, phenotypic expression, and survival by modulating tyrosine kinase receptors for neurotrophic factors. Our studies tested the hypothesis that GM1 exerts its neurotrophic action on dopaminergic neurons, in part, by interacting with the GDNF (glia cell‐derived neurotrophic factor) receptor complex, Ret tyrosine kinase and GFRα1 co‐receptor. GM1 addition to striatal slices in situ increased Ret activity in a concentration‐ and time‐dependent manner. GM1‐induced Ret activation required the whole GM1 molecule and was inhibited by the kinase inhibitors PP2 and PP1. Ret activation was followed by Tyr1062 phosphorylation and PI3 kinase/Akt recruitment. The Src kinase was associated with Ret and GM1 enhanced its phosphorylation. GM1 responses required the presence of GFRα1, and there was a GM1 concentration‐dependent increase in the binding of endogenous GDNF which paralleled that of Ret activation. Neutralization of the released GDNF did not influence the Ret response to GM1, and GM1 had no effect on GDNF release. Our in situ studies suggest that GM1 via GFRα1 modulates Ret activation and phosphorylation in the striatum and provide a putative mechanism for its effects on dopaminergic neurons. Indeed, chronic GM1 treatment enhanced Ret activity and phosphorylation in the striatum of the MPTP‐mouse and kinase activation was associated with recovery of dopamine and DOPAC deficits.

  相似文献   


14.
Amphetamine is a central nervous system psychostimulant with a high potential for abuse. Recent literature has shown that genetic and drug‐induced elevations in dopamine transporter (DAT) expression augment the neurochemical and behavioral potency of psychostimulant releasers. However, it remains to be determined if the well‐documented differences in DAT levels across striatal regions drive regionally distinct amphetamine effects within individuals. DAT levels and dopamine uptake rates have been shown to follow a gradient in the striatum, with the highest levels in the dorsal regions and lowest levels in the nucleus accumbens shell; thus, we hypothesized that amphetamine potency would follow this gradient. Using fast scan cyclic voltammetry in mouse brain slices, we examined DAT inhibition and changes in exocytotic dopamine release by amphetamine across four striatal regions (dorsal and ventral caudate‐putamen, nucleus accumbens core and shell). Consistent with our hypothesis, amphetamine effects at the DAT and on release decreased across regions from dorsal to ventral, and both measures of potency were highly correlated with dopamine uptake rates. Separate striatal subregions are involved in different aspects of motivated behaviors, such as goal‐directed and habitual behaviors, that become dysregulated by drug abuse, making it critically important to understand regional differences in drug potencies.

  相似文献   


15.
For our nervous system to function properly, each neuron must generate a single axon and elongate the axon to reach its target. It is known that actin filaments and their dynamic interaction with microtubules within growth cones play important roles in inducing axon extension. However, it remains unclear how cytoskeletal dynamics is controlled in growth cones. In this study, we report that Rufy3, a RUN domain‐containing protein, is a neuron‐specific and actin filament‐relevant protein. We find that the appropriate expression of Rufy3 in mouse hippocampal neurons is required for the development of a single axon and axon growth. Our results show that Rufy3 specifically interacts with actin filament‐binding proteins, such as Fascin, and colocalizes with Fascin in growth cones. Knockdown of Rufy3 impairs the distribution of Fascin and actin filaments, accompanied by an increased proportion of neurons with multiple axons and a decrease in the axon length. Therefore, Rufy3 may be particularly important for neuronal axon elongation by interacting with Fascin to control actin filament organization in axonal growth cones.

  相似文献   


16.
The principal motor tract involved in mammalian locomotor activities is known as the corticospinal tract (CST), which starts in the brain motor cortex (upper motor neuron), extends its axons across the brain to brainstem and finally reaches different regions of spinal cord, contacting the lower motor neurons. Visualization of the CST is essential to carry out studies in different kinds of pathologies such as spinal cord injury or multiple sclerosis. At present, most studies of axon structure and/or integrity that involve histological tissue sectioning present the problem of finding the region where the CST is predominant. To solve this problem, one could use a novel technique to make the tissues transparent and observe them directly without histological sectioning. However, the disadvantage of this procedure is the need of costly and non‐conventional equipment, such as two‐photon fluorescence microscopy or ultramicroscopy to perform the image acquisition. Here, we show that labeling the CST with FluoroRuby in the motor cortex and then performing the clearing technique, the z‐acquisition of the entire CST in unsectioned tissue followed by three‐dimensional reconstruction can be carried out by standard one‐photon confocal microscopy, with yields similar to those obtained by two‐photon microscopy. In addition, we present an example of the application of this method in a spinal cord injury model, where the disruption of CST is shown at the lesion site.

  相似文献   


17.
Cu/Zn‐superoxide dismutase is misfolded in familial and sporadic amyotrophic lateral sclerosis, but it is not clear how this triggers endoplasmic reticulum (ER) stress or other pathogenic processes. Here, we demonstrate that mutant SOD1 (mSOD1) is predominantly found in the cytoplasm in neuronal cells. Furthermore, we show that mSOD1 inhibits secretory protein transport from the ER to Golgi apparatus. ER‐Golgi transport is linked to ER stress, Golgi fragmentation and axonal transport and we also show that inhibition of ER‐Golgi trafficking preceded ER stress, Golgi fragmentation, protein aggregation and apoptosis in cells expressing mSOD1. Restoration of ER‐Golgi transport by over‐expression of coatomer coat protein II subunit Sar1 protected against inclusion formation and apoptosis, thus linking dysfunction in ER‐Golgi transport to cellular pathology. These findings thus link several cellular events in amyotrophic lateral sclerosis into a single mechanism occurring early in mSOD1 expressing cells.

  相似文献   


18.
19.
Both dopamine and glutamate are critically involved in cognitive processes such as working memory. Astrocytes, which express dopamine receptors, are essential elements in the termination of glutamatergic signaling: the astrocytic glutamate transporter GLT‐1 is responsible for > 90% of cortical glutamate uptake. The effect of dopamine depletion on glutamate transporters in the prefrontal cortex (PFC) remains unknown. In an effort to determine if astrocytes are a locus of cortical dopamine–glutamate interactions, we examined the effects of chronic dopamine denervation on PFC protein and mRNA levels of glutamate transporters. PFC dopamine denervation elicited a marked increase in GLT‐1 protein levels, but had no effect on levels of other glutamate transporters; high‐affinity glutamate transport was positively correlated with the extent of dopamine depletion. GLT‐1 gene expression was not altered. Our data suggest that dopamine depletion may lead to post‐translational modifications that result in increased expression and activity of GLT‐1 in PFC astrocytes.

  相似文献   


20.
Compensatory mechanisms in dopamine (DA) signaling have long been proposed to delay onset of locomotor symptoms during Parkinson's disease progression until ~ 80% loss of striatal DA occurs. Increased striatal dopamine turnover has been proposed to be a part of this compensatory response, but may occur after locomotor symptoms. Increased tyrosine hydroxylase (TH) activity has also been proposed as a mechanism, but the impact of TH protein loss upon site‐specific TH phosphorylation in conjunction with the impact on DA tissue content is not known. The tissue content of DA was determined against TH protein loss in the striatum and substantia nigra (SN) following 6‐hydroxydopamine lesion in the medial forebrain bundle in young Sprague–Dawley male rats. Although DA predictably decreased in both regions following 6‐hydroxydopamine, there was a significant difference in DA loss between the striatum (75%) and SN (40%), despite similar TH protein loss. Paradoxically, there was a significant decrease in DA against remaining TH protein in striatum, but a significant increase in DA against remaining TH in SN. In the SN, increased DA per remaining TH protein was matched by increased ser31, but not ser40, TH phosphorylation. In striatum, both ser31 and ser40 phosphorylation decreased, reflecting decreased DA per TH. However, in control nigral and striatal tissue, only ser31 phosphorylation correlated with DA per TH protein. Combined, these results suggest that the phosphorylation of ser31 in the SN may be a mechanism to increase DA biosynthesis against TH protein loss in an in vivo model of Parkinson's disease.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号