首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
High glucose-induced protein synthesis in the glomerular epithelial cell (GEC) is partly dependent on reduction in phosphorylation of AMP-activated protein kinase (AMPK). We evaluated the effect of resveratrol, a phytophenol known to stimulate AMPK, on protein synthesis. Resveratrol completely inhibited high glucose stimulation of protein synthesis and synthesis of fibronectin, an important matrix protein, at 3 days. Resveratrol dose-dependently increased AMPK phosphorylation and abolished high glucose-induced reduction in its phosphorylation. We examined the effect of resveratrol on critical steps in mRNA translation, a critical event in protein synthesis. Resveratrol inhibited high glucose-induced changes in association of eIF4E with eIF4G, phosphorylation of eIF4E, eEF2, eEF2 kinase and, p70S6 kinase, indicating that it affects important events in both initiation and elongation phases of mRNA translation. Upstream regulators of AMPK in high glucose-treated GEC were explored. High glucose augmented acetylation of LKB1, the upstream kinase for AMPK, and inhibited its activity. Resveratrol prevented acetylation of LKB1 and restored its activity in high glucose-treated cells; this action did not appear to depend on SIRT1, a class III histone deacetylase. Our data show that resveratrol ameliorates protein synthesis by regulating the LKB1–AMPK axis.  相似文献   

3.
Resveratrol may protect against metabolic disease through activating SIRT1 deacetylase. Because we have recently defined AMPK activation as a key mechanism for the beneficial effects of polyphenols on hepatic lipid accumulation, hyperlipidemia, and atherosclerosis in type 1 diabetic mice, we hypothesize that polyphenol-activated SIRT1 acts upstream of AMPK signaling and hepatocellular lipid metabolism. Here we show that polyphenols, including resveratrol and the synthetic polyphenol S17834, increase SIRT1 deacetylase activity, LKB1 phosphorylation at Ser(428), and AMPK activity. Polyphenols substantially prevent the impairment in phosphorylation of AMPK and its downstream target, ACC (acetyl-CoA carboxylase), elevation in expression of FAS (fatty acid synthase), and lipid accumulation in human HepG2 hepatocytes exposed to high glucose. These effects of polyphenols are largely abolished by pharmacological and genetic inhibition of SIRT1, suggesting that the stimulation of AMPK and lipid-lowering effect of polyphenols depend on SIRT1 activity. Furthermore, adenoviral overexpression of SIRT1 stimulates the basal AMPK signaling in HepG2 cells and in the mouse liver. AMPK activation by SIRT1 also protects against FAS induction and lipid accumulation caused by high glucose. Moreover, LKB1, but not CaMKKbeta, is required for activation of AMPK by polyphenols and SIRT1. These findings suggest that SIRT1 functions as a novel upstream regulator for LKB1/AMPK signaling and plays an essential role in the regulation of hepatocyte lipid metabolism. Targeting SIRT1/LKB1/AMPK signaling by polyphenols may have potential therapeutic implications for dyslipidemia and accelerated atherosclerosis in diabetes and age-related diseases.  相似文献   

4.
5.
It is important to understand the mechanisms that control muscle precursor cell (MPC) proliferation for the development of countermeasures to offset the deleterious effects of the aging-related loss of skeletal muscle mass (and myonuclei) and the impaired ability of old muscle to regrow and regenerate. Over-expression of the NAD+-dependent histone deacetylase Sirt1 increased MPC proliferation and cell cycle progression as evidenced by increased 5-bromo-2'-deoxyuridine (BrdU) incorporation, an increase in cell number, proliferating cell nuclear antigen expression, and the phosphorylation of retinoblastoma protein. Associated with the Sirt1-mediated increase in MPC cycle progression were the bidirectional decreases and increases in the expression of the cyclin-dependent kinase inhibitors p21(Waf/Cip1) and p27(Kip1), respectively. Based upon our recent observation that lowering oxygen (O2) in culture from ambient (20%) to estimated physiological levels (5%) increased MPC proliferation, we next measured Sirt1 protein at 5% and 20% O2. Interestingly, in addition to increased proliferation in MPCs cultured at 5% O2, Sirt1 expression increased, compared to 20% O2. Using O2 levels as a platform to modulate basal Sirt1 protein, activation of Sirt1 activity with resveratrol in 20% O2 increased MPC proliferation while inhibition of Sirt1 with nicotinamide in 5% O2 lowered proliferation. For the first time, Sirt1 has been shown to increase MPC proliferation. These findings could have clinical significance since MPC proliferation has important implications in regulating skeletal muscle growth, maintenance, and repair, and the aging-related loss of skeletal muscle mass.  相似文献   

6.
Resveratrol is a natural polyphenolic compound with anti-inflammatory, antioxidant and neuroprotective properties, and it serves as a chemopreventive and chemotherapeutic agent. However, only very limited data have been obtained regarding the effects of resveratrol on preadipocytes, and the mechanisms of these effects remain largely unknown. In this study, murine 3T3-L1 preadipocytes were incubated with resveratrol, and cell apoptosis was investigated. Resveratrol caused S-phase arrest to inhibit cell proliferation and significantly increased the lactate dehydrogenase leaking ratio. Hoechst 33258 staining and transmission electron microscopy revealed the ultrastructural changes in nuclear chromatins of apoptotic cells. Furthermore, resveratrol activated the mitochondrial signaling with decreases in the mitochondrial membrane potential, cytochrome c release and the activation of caspase 9 and caspase 3. Resveratrol treatment also increased the protein level of Sirt1. By using small interfering RNAs of Sirt1, adenosine-monophosphate-activated protein kinase (AMPK) α, survivin and the AMPK agonist (5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside) and specific inhibitors for protein kinase B (AKT) or caspases, it was demonstrated that activation of Sirt1 inhibited AKT activation and further decreased the expression of survivin. It could also increase AMPK activation. Both signaling pathways activated mitochondrion-mediated pathway. Our findings clarified the apoptotic effects of resveratrol in 3T3-L1 preadipocytes and revealed the involved pathway including AMPK, AKT and survivin, suggesting its potential therapeutic application in the treatment or prevention of obesity and related metabolic symptoms.  相似文献   

7.
Caloric restriction (CR) extends the life span and health span of a variety of species and slows the progression of age-related hearing loss (AHL), a common age-related disorder associated with oxidative stress. Here, we report that CR reduces oxidative DNA damage in multiple tissues and prevents AHL in wild-type mice but fails to modify these phenotypes in mice lacking the mitochondrial deacetylase Sirt3, a member of the sirtuin family. In response to CR, Sirt3 directly deacetylates and activates mitochondrial isocitrate dehydrogenase 2 (Idh2), leading to increased NADPH levels and an increased ratio of reduced-to-oxidized glutathione in mitochondria. In cultured cells, overexpression of Sirt3 and/or Idh2 increases NADPH levels and protects from oxidative stress-induced cell death. Therefore, our findings identify Sirt3 as an essential player in enhancing the mitochondrial glutathione antioxidant defense system during CR and suggest that Sirt3-dependent mitochondrial adaptations may be a central mechanism of aging retardation in mammals.  相似文献   

8.
Zhu X  Liu Q  Wang M  Liang M  Yang X  Xu X  Zou H  Qiu J 《PloS one》2011,6(11):e27081
Inflammation is one of main mechanisms of autoimmune disorders and a common feature of most diseases. Appropriate suppression of inflammation is a key resolution to treat the diseases. Sirtuin1 (Sirt1) has been shown to play a role in regulation of inflammation. Resveratrol, a potent Sirt1 activator, has anti-inflammation property. However, the detailed mechanism is not fully understood. In this study, we investigated the anti-inflammation role of Sirt1 in NIH/3T3 fibroblast cell line. Upregulation of matrix metalloproteinases 9 (MMP-9), interleukin-1beta (IL-1β), IL-6 and inducible nitric oxide synthase (iNOS) were induced by tumor necrosis factor alpha (TNF-α) in 3T3 cells and resveratrol suppressed overexpression of these pro-inflammatory molecules in a dose-dependent manner. Knockdown of Sirt1 by RNA interference caused 3T3 cells susceptible to TNF-α stimulation and diminished anti-inflammatory effect of resveratrol. We also explored potential anti-inflammatory mechanisms of resveratrol. Resveratrol reduced NF-κB subunit RelA/p65 acetylation, which is notably Sirt1 dependent. Resveratrol also attenuated phosphorylation of mammalian target of rapamycin (mTOR) and S6 ribosomal protein (S6RP) while ameliorating inflammation. Our data demonstrate that resveratrol inhibits TNF-α-induced inflammation via Sirt1. It suggests that Sirt1 is an efficient target for regulation of inflammation. This study provides insight on treatment of inflammation-related diseases.  相似文献   

9.
Resveratrol mimics calorie restriction to extend lifespan of Caenorhabditis elegans, yeast and Drosophila, possibly through activation of Sir2 (silent information regulator 2), a NAD+-dependent histone deacetylase. In the present study, resveratrol is shown to inhibit the insulin signalling pathway in several cell lines and rat primary hepatocytes in addition to its broad-spectrum inhibition of several signalling pathways. Resveratrol effectively inhibits insulin-induced Akt and MAPK (mitogen-activated protein kinase) activation mainly through disruption of the interactions between insulin receptor substrates and its downstream binding proteins including p85 regulatory subunit of phosphoinositide 3-kinase and Grb2 (growth factor receptor-bound protein 2). The inhibitory effect of resveratrol on insulin signalling is also demonstrated at mRNA level, where resveratrol reverses insulin effects on phosphoenolpyruvate carboxykinase, glucose-6-phosphatase, fatty acid synthase and glucokinase. In addition, RNA interference experiment shows that the inhibitory effect of resveratrol on insulin signalling pathway is not weakened in cells with reduced expression of SirT1, the mammalian counterpart of Sir2. These observations raise the possibility that resveratrol may additionally modulate lifespan through inhibition of insulin signalling pathway, independently of its activation of SirT1 histone deacetylase. Furthermore, the present study may help to explain a wide range of biological effects of resveratrol, and provides further insight into the molecular basis of calorie restriction.  相似文献   

10.
Human sirtuin1 (SIRT1), the closest homolog of the yeast sir2 protein, functions as an NAD+-dependent histone and non-histone protein deacetylase in several cellular processes, like energy metabolism, stress responses, aging, etc. In our recent study, we have shown that lamin A (a major nuclear matrix protein) directly binds with and activates SIRT1. Resveratrol, a natural phenol, has long been known as an activator of SIRT1. However, resveratrol’s direct activation of SIRT1 has been refuted several times. In our study, we have provided a mechanistic explanation to this question, and have shown that resveratrol activates SIRT1 by increasing its binding with lamin A, thus aiding in the nuclear matrix (NM) localization of SIRT1. We have also shown that rescue of adult stem cell (ASC) decline in laminopathy-based premature aging mice by resveratrol is SIRT1-dependent. Further, resveratrol’s ameliorating effects on progeria and its capacity to extend lifespan in progeria mice has been established. Here we have summarized these findings and their probable implications on other aspects, like chromatin remodeling, stem cell therapy, DNA damage responses, etc.  相似文献   

11.
Sirt1, a NAD+-dependent histone deacetylase, may regulate senescence, metabolism, and apoptosis. In this study, primary pig preadipocytes were cultured in DMEM/F12 medium containing 10% fetal bovine serum (FBS) with or without reagents affecting Sirt1 activity. The adipocyte differentiation process was visualized by light microscopy after Oil red O staining. Proliferation and differentiation of preadipocytes was measured using methylthiazolyldiphenyl-tetrazolium bromide (MTT) and Oil red O extraction. Expression of Sirt1, FoxO1, and adipocyte specific genes was detected with semi-quantitive RT-PCR. The results showed that Sirt1 mRNA was widely expressed in various pig tissues from different developmental stages. Sirt1 mRNA was expressed throughout the entire differentiation process of pig preadipocytes. Resveratrol significantly increased Sirt1 mRNA expression, but decreased the expression of FoxO1 and adipocyte marker gene PPARγ2. Resveratrol significantly inhibited pig preadipocyte proliferation and differentiation. Nicotinamide decreased the expression of Sirt1 mRNA, but increased the expression of FoxO1 and adipocyte specific genes. Nicotinamide greatly stimulated the proliferation and differentiation of pig preadipocytes. In conclusion, these results indicate that Sirt1 may modulate the proliferation and differentiation of pig preadipocytes. Sirt1 may down-regulate pig preadipocytes proliferation and differentiation through repression of adipocyte genes or FoxO1.  相似文献   

12.
Resveratrol, a polyphenol in red wine, has been reported as a calorie restriction mimetic with potential antiaging and antidiabetogenic properties. It is widely consumed as a nutritional supplement, but its mechanism of action remains a mystery. Here, we report that the metabolic effects of resveratrol result from competitive inhibition of cAMP-degrading phosphodiesterases, leading to elevated cAMP levels. The resulting activation of Epac1, a cAMP effector protein, increases intracellular Ca(2+) levels and activates the CamKKβ-AMPK pathway via phospholipase C and the ryanodine receptor Ca(2+)-release channel. As a consequence, resveratrol increases NAD(+) and the activity of Sirt1. Inhibiting PDE4 with rolipram reproduces all of the metabolic benefits of resveratrol, including prevention of diet-induced obesity and an increase in mitochondrial function, physical stamina, and glucose tolerance in mice. Therefore, administration of PDE4 inhibitors may also protect against and ameliorate the symptoms of metabolic diseases associated with aging.  相似文献   

13.
The bone protective effects of resveratrol have been demonstrated in several osteoporosis models while the underlying mechanism is largely unclear. In the present study, we evaluated the effects of resveratrol on differentiation and apoptosis of murine osteoclast progenitor RAW 264.7 cells. We found that resveratrol at non-toxic concentrations dose-dependently inhibited RANKL-induced osteoclast differentiation and induced apoptosis. Resveratrol has been shown to be an activator of Sirt1, a NAD+ dependent protein deacetylase, and has been demonstrated to mimic estrogen. However, we found that although Sirt1 protein was abundantly expressed in RAW264.7 cells, the specific Sirt1 inhibitor EX-527 could not attenuate the inhibition of osteoclastogenesis mediated by resveratrol. Also, the effects of resveratrol could not be attenuated by ICI-182780, a high affinity estrogen receptor antagonist. The central role of reactive oxygen species (ROS) in RANKL-induced osteoclast differentiation has recently been clarified. We found that resveratrol suppressed RANKL-induced ROS generation in a concentration dependent manner. We postulate that the direct inhibitory effects of resveratrol on osteoclastogenesis are mediated via inhibition of ROS generation.  相似文献   

14.
15.
Oxidative stress can induce premature cellular senescence. Senescent cells secrete various growth factors and cytokines, such as IL-6, that can signal to the tumor microenvironment and promote cancer cell growth. Sirtuin 1 (Sirt1) is a class III histone deacetylase that regulates a variety of physiological processes, including senescence. We found that caveolin-1, a structural protein component of caveolar membranes, is a direct binding partner of Sirt1, as shown by the binding of the scaffolding domain of caveolin-1 (amino acids 82–101) to the caveolin-binding domain of Sirt1 (amino acids 310–317). Our data show that oxidative stress promotes the sequestration of Sirt1 into caveolar membranes and the interaction of Sirt1 with caveolin-1, which lead to inhibition of Sirt1 activity. Reactive oxygen species stimulation promotes acetylation of p53 and premature senescence in wild-type but not caveolin-1 null mouse embryonic fibroblasts (MEFs). Either down-regulation of Sirt1 expression or re-expression of caveolin-1 in caveolin-1 null MEFs restores reactive oxygen species-induced acetylation of p53 and premature senescence. In addition, overexpression of caveolin-1 induces stress induced premature senescence in p53 wild-type but not p53 knockout MEFs. Phosphorylation of caveolin-1 on tyrosine 14 promotes the sequestration of Sirt1 into caveolar membranes and activates p53/senescence signaling. We also identified IL-6 as a caveolin-1-specific cytokine that is secreted by senescent fibroblasts following the caveolin-1-mediated inhibition of Sirt1. The caveolin-1-mediated secretion of IL-6 by senescent fibroblasts stimulates the growth of cancer cells. Therefore, by inhibiting Sirt1, caveolin-1 links free radicals to the activation of the p53/senescence pathway and the protumorigenic properties of IL-6.  相似文献   

16.
Sirtuin 1 (SIRT1) is an NAD-dependent histone deacetylase (HDAC) whose activity is thought to forestall the onset of a variety of age-related diseases. Mice carrying null mutations of the Sirt1 gene suffer high rates of neonatal lethality and those that survive are sterile, growth retarded, lean and their livers express high levels of insulin-like growth factor binding protein-1 (IGFBP1). IGFBP1 binds and regulates the bioavailability of Igfs. Interestingly, Igfbp1 transgenic mice largely phenocopy Sirt1−/− mice, suggesting the possibility that the over-expression of IGFBP1 in Sirt1−/− mice might be responsible for many of their phenotypes. We interbred Sirt1 heterozygote mice to Igfbp1-deficient mice to test the hypothesis that the disruption of one or both alleles of Igfbp1 would rescue the phenotype of Sirt1−/− mice. We report that mono- or bi-allelic disruption of the Igfbp1 gene had no effect on the embryonic and neonatal lethality of Sirt1−/− mice. However, we show that mice lacking at least one allele of both Sirt1 and Igfbp1 genes have a much higher incidence of malocclusion.  相似文献   

17.
Resveratrol, a naturally occurring polyphenolic compound, has been reported to exert anticancer activity by affecting diverse molecular targets. In this study, we examined the effects and the underlying mechanisms of resveratrol on gastric cancer. We found that resveratrol inhibited the proliferation of gastric cancer cells in a dose-dependent manner. At the concentration of 25 and 50 µM, resveratrol inhibited the cell viability and diminished the clonogenic potential of gastric cancer cells. Resveratrol treatment arrested gastric cancer cells in the G1 phase and led to senescence instead of apoptosis. Regulators of the cell cycle and senescence pathways, including cyclin D1, cyclin-dependent kinase (CDK4 and 6), p21 and p16, were dysregulated by resveratrol treatment. The inhibitory effects of resveratrol on gastric cancer were also verified in vivo using a nude mice xenograft model. Resveratrol (40 mg/kg/d) exerted inhibitory activities on gastric cancer development and significantly decreased the fractions of Ki67-positive cells in the tumor specimens from the nude mice. After resveratrol treatment, the induction of senescence and the changes in the expression of the regulators involved in the cell cycle and senescence pathways were similar to what we observed in vitro. However, the depletion of Sirtuin (Sirt)1 reversed the above-described effects of resveratrol both in vitro and in vivo. Our data suggest that resveratrol inhibits gastric cancer in a Sirt1-dependent manner and provide detailed evidence for the possibility of applying resveratrol in gastric cancer prevention and therapy.  相似文献   

18.
AKT/PKB kinases transmit insulin and growth factor signals downstream of phosphatidylinositol 3-kinase (PI3K). AKT activation involves phosphorylation at two residues, Thr308 and Ser473, mediated by PDK1 and the mammalian target of rapamycin complex 2 (mTORC2), respectively. Impaired AKT activation is a key factor in metabolic disorders involving insulin resistance, whereas hyperactivation of AKT is linked to cancer pathogenesis. Here, we identify the cytoplasmic NAD+-dependent deacetylase, Sirt2, as a novel AKT interactor, required for optimal AKT activation. Pharmacological inhibition or genetic down-regulation of Sirt2 diminished AKT activation in insulin and growth factor-responsive cells, whereas Sirt2 overexpression enhanced the activation of AKT and its downstream targets. AKT was prebound with Sirt2 in serum or glucose-deprived cells, and the complex dissociated following insulin treatment. The binding was mediated by the pleckstrin homology and the kinase domains of AKT and was dependent on AMP-activated kinase. This regulation involved a novel AMP-activated kinase-dependent Sirt2 phosphorylation at Thr101. In cells with constitutive PI3K activation, we found that AKT also associated with a nuclear sirtuin, Sirt1; however, inhibition of PI3K resulted in dissociation from Sirt1 and increased association with Sirt2. Sirt1 and Sirt2 inhibitors additively inhibited the constitutive AKT activity in these cells. Our results suggest potential usefulness of Sirt1 and Sirt2 inhibitors in the treatment of cancer cells with up-regulated PI3K activity and of Sirt2 activators in the treatment of insulin-resistant metabolic disorders.  相似文献   

19.
Sirt3, a mitochondrial NAD+-dependent deacetylase, is regarded as a potential regulator in cellular metabolism. However, the role of Sirt3 in the regulation of mitochondrial FoF1ATPase and the linkage to mitochondrial diseases is unclear. In this study, we demonstrated a role of Sirt3 in the regulation of FoF1ATPase activity in human cells. Knockdown of Sirt3 in 143B cells by shRNA transfection caused increased acetylation levels of the α and OSCP subunits of FoF1ATPase. We showed that Sirt3 physically interacted with the OSCP and led to its subsequent deacetylation. By incubation of mitochondria with the purified Sirt3 protein, Sirt3 could regulate FoF1ATPase activity through its deacetylase activity. Moreover, suppression of Sirt3 reduced the FoF1ATPase activity, consequently decreased the intracellular ATP level, diminished the capacity of mitochondrial respiration, and compromised metabolic adaptability of 143B cells to the use of galactose as the energy source. In human cells harboring ? 85% of mtDNA with 4977 bp deletion, we showed that oxidative stress induced a reduction of Sirt3 expression, and an increased acetylation of the OSCP subunit of FoF1ATPase. Importantly, the expression of Sirt3 was also decreased in the skin fibroblasts from patients with CPEO syndrome. We further demonstrated that oxidative stress induced by 5–10 μM of menadione impaired the Sirt3-mediated deacetylation and activation on FoF1ATPase activity through decreasing the protein level of Sirt3. Our findings suggest that increased intracellular ROS levels might modulate the expression of Sirt3 which deacetylates and activates FoF1ATPase in human cells with mitochondrial dysfunction caused by a pathogenic mtDNA mutation.  相似文献   

20.
Sirt1 appear to be NAD(+)-dependent deacetylase that deacetylates histones and several non-histone proteins. In this study, we identified Sirt1 as a physical interaction partner of Tip60, which is a mammalian MYST-type histone acetyl-transferase that specifically acetylates histones H2A and H4. Although Tip60 also acetylates DNA damage-specific histone H2A variant H2AX in response to DNA damage, which is a process required for appropriate DNA damage response, overexpression of Sirt1 represses Tip60-mediated acetylation of H2AX. Furthermore, Sirt1 depletion by RNAi causes excessive acetylation of H2AX, and enhances accumulation of γ-ray irradiation-induced MDC1, BRCA1, and Rad51 foci in nuclei. These findings suggest that Sirt1 functions as negative regulator of Tip60-mediated acetylation of H2AX. Moreover, Sirt1 deacetylates an acetylated Tip60 in response to DNA damage and stimulates proteasome-dependent Tip60 degradation in vivo, suggesting that Sirt1 negatively regulates the protein level of Tip60 in vivo. Sirt1 may thus repress excessive activation of the DNA damage response and Rad51-homologous recombination repair by suppressing the function of Tip60.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号