首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Remodeling of the extracellular matrix by fibroblasts is an important step in the process of wound healing and tissue repair. We compared the behavior of fibroblasts from two different tissues, dermis and gingiva, in three-dimensional lattices made of two different extracellular matrix macromolecules, collagen and fibrin. Cells were grown in monolayer cultures from normal skin or gingiva and seeded in three-dimensional lattices made of either collagen or fibrin. Photonic and scanning electron microscopy did not reveal any morphological differences between the two types of fibroblasts in both sets of lattices. Both types of fibroblasts retracted collagen lattices similarly and caused only a slight degradation of the collagen substratum. By contrast, when seeded in fibrin lattices, gingival fibroblasts completely digested their substratum in less than 8 days, whereas only a slight fibrin degradation was observed with dermal fibroblasts. The ability of gingival but not dermal fibroblasts to express high levels of tissue plasminogen activators (tPA) when cultured in fibrin lattices was assessed on an immunological basis. Also, deprivation of plasminogen-contaminating fibrinogen preparations or use of tPA inhibitors markedly inhibited both fibrinolysis and retraction rates of fibrin lattices by gingival fibroblasts. Casein-zymography confirmed the intense proteolytic activity induced by fibrin in gingival fibroblasts. It was inhibited by aprotinin and phenyl methylsulfonyl fluoride (PMSF), two non-specific inhibitors of serine proteinases, and by η-amino-caproic acid (ηACA), an inhibitor of plasminogen activators. Monolayer cultures exhibited only trace amounts of caseinolytic activity. Our results demonstrate that the expression of proteinases by fibroblasts is dependent not only on their tissue origin but also on the surrounding extracellular matrix. The intense fibrinolytic activity of gingival fibroblasts in fibrin lattices may explain partially the high rate of healing clinically observed in gingiva. © 1996 Wiley-Liss, Inc.  相似文献   

2.
To understand the contribution of epidermal melanocytes in the proteolytic potential of human skin, we have studied melanocytes grown in a low-serum medium deprived of phorbol esters, cholera toxin, and other non-physiological supplements. We focused on the plasminogen activation system and certain matrix metalloproteinases (gelatinases). Supposing that the proteolytic activity of cells can influence binding to collagen matrix and its reorganization, we have analyzed these parameters as well. We found that human melanocytes secreted tissue-type plasminogen activator and utilised it to generate cell-bound plasmin. No urokinase-type plasminogen activator was detected in the cultures but its receptor was found in cell extracts. Both the 72 kDa and 92 kDa gelatinases were secreted by the cells and in equal amounts. In addition, melanocytes secreted the wide-spectrum proteinase inhibitor alpha-2-macroglobulin. Melanocytes cast into collagen matrices retained a rounded morphology, did not extend processes, and were unable to contract collagen lattices. As a control, these parameters were investigated in parallel in cultures of human keratinocytes, dermal fibroblasts, and two melanoma cell lines. The obtained characteristics suggest that normal human melanocytes are proteolytically active cells. This function may pertain to skin physiology and pathophysiology.  相似文献   

3.
Three-dimensional collagen lattice cultures of fibroblasts mimic the in vivo situation better than monolayer cultures. Here, skin fibroblasts from scleroderma patients and healthy controls were cultivated in collagen lattices, and the effects of recombinant human gamma-interferon (IFN-gamma) on these cultures investigated. IFN-gamma inhibited collagen lattice retraction in a dose-dependent way at concentrations ranging from 10 to 10,000 U/ml. This effect was independent of any alteration to the cell proliferation within the lattices. The inhibition was of the same order of magnitude in normal and pathological fibroblasts. The synthesis of collagen and non-collagen proteins, particularly fibronectin, was increased in scleroderma cultures. It was inhibited in both normal and scleroderma fibroblasts by IFN-gamma, with a maximal effect at the concentration 1000 U/ml, but the inhibition of protein synthesis was far more intense in scleroderma than in normal cells. In situ hybridization, Northern blot and dot blot analyses showed that mRNA coding for pro alpha 1(I) collagen was decreased in IFN-gamma-treated cells, indicating an effect at the pretranslational level. IFN-gamma also inhibited glycosaminoglycan synthesis, but in scleroderma cells only. This study shows that IFN-gamma regulates cell behavior in three-dimensional collagen matrices: (i) it decreases protein and specifically glycosaminoglycan synthesis in scleroderma fibroblasts, (ii) it modulates the interactions between cells and matrix that lead to the retraction of the lattice. Whereas collagen synthesis is largely decreased in lattice cultures like in vivo, it remains increased in the case of scleroderma compared to normal fibroblasts and may be down-regulated by IFN-gamma. Similar conclusions may be drawn for fibronectin and glycosaminoglycans. The inhibitory effect of IFN-gamma on the retraction capacity of fibroblasts and on their ability to synthesize increased amounts of extracellular matrix macromolecules may be of potential interest for therapeutic use of IFN-gamma in scleroderma patients.  相似文献   

4.
Fibroblasts cultivated in three-dimensional tissue-like matrices are characterized by a slowed metabolism and a decrease of protein synthesis, unless they are submitted to physical tensions. We checked the effects of insulin like growth factor-I (IGF-I), known as a potent stimulator of mitogenesis and protein synthesis for many cell types, in various models of cultures: confluent monolayers, collagen lattices, non-retracting or retracting fibrin lattices. IGF-I (1-100 ng.ml-1) had no effect on cell divisions in lattice cultures. It was able to stimulate collagen lattice retraction when the medium was supplemented with low concentrations of serum. IGF-I at 10 or 100 ng.ml-1 stimulated collagen and non-collagen syntheses in all culture systems, but stimulation of collagen synthesis only began at the highest concentration (100 ng.ml-1) in retracted lattices. Northern blot and dot-blot analyses of mRNAs extracted from monolayer cultures of fibroblasts showed that IGF-I stimulated pro alpha 1(I) collagen synthesis at the pretranslational level. Cycloheximide (7.5 micrograms.ml-1) completely inhibited pro alpha 1(I) collagen gene expression induced by IGF-I. These results show that IGF-I is a potent stimulus for protein synthesis and collagen gene expression in monolayers and tridimensional cultures of fibroblasts, but that it exerts no mitogenic activity in tridimensional lattices. Synergistic associations of IGF-I with other growth factors will have to be found in order to reverse the quiescent status of fibroblasts in lattices.  相似文献   

5.
The cysteine protease cathepsin B is upregulated in a variety of tumors, particularly at the invasive edges. Cathepsin B can degrade extracellular matrix proteins, such as collagen IV and laminin, and can activate the precursor form of urokinase plasminogen activator (uPA), perhaps thereby initiating an extracellular proteolytic cascade. Recently, we demonstrated that procathepsin B interacts with the annexin II heterotetramer (AIIt) on the surface of tumor cells. AIIt had previously been shown to interact with the serine proteases: plasminogen/plasmin and tissue-type plasminogen activator (tPA). The AIIt binding site for cathepsin B differs from that for either plasminogen/plasmin or tPA. AIIt also interacts with extracellular matrix proteins, e.g., collagen I and tenascin-C, forming a structural link between the tumor cell surface and the extracellular matrix. Interestingly, cathepsin B, plasminogen/plasmin, t-PA and tenascin-C have all been linked to tumor development. We speculate that colocalization through AIIt of proteases and their substrates on the tumor cell surface may facilitate: (1) activation of precursor forms of proteases and initiation of proteolytic cascades; and (2) selective degradation of extracellular matrix proteins. The recruitment of proteases to specific regions on the cell surface, regions where potential substrates are also bound, could well function as a 'proteolytic center' to enhance tumor cell detachment, invasion and motility.  相似文献   

6.
Fibrosis is defined as a fibroproliferative or abnormal fibroblast activation-related disease. Deregulation of wound healing leads to hyperactivation of fibroblasts and excessive accumulation of extracellular matrix (ECM) proteins in the wound area, the pathological manifestation of fibrosis. The accumulation of excessive levels of collagen in the ECM depends on two factors: an increased rate of collagen synthesis and or decreased rate of collagen degradation by cellular proteolytic activities. The urokinase/tissue type plasminogen activator (uPA/tPA) and plasmin play significant roles in the cellular proteolytic degradation of ECM proteins and the maintenance of tissue homeostasis. The activities of uPA/tPA/plasmin and plasmin-dependent MMPs rely mostly on the activity of a potent inhibitor of uPA/tPA, plasminogen activator inhibitor-1 (PAI-1). Under normal physiologic conditions, PAI-1 controls the activities of uPA/tPA/plasmin/MMP proteolytic activities and thus maintains the tissue homeostasis. During wound healing, elevated levels of PAI-1 inhibit uPA/tPA/plasmin and plasmin-dependent MMP activities, and, thus, help expedite wound healing. In contrast to this scenario, under pathologic conditions, excessive PAI-1 contributes to excessive accumulation of collagen and other ECM protein in the wound area, and thus preserves scarring. While the level of PAI-1 is significantly elevated in fibrotic tissues, lack of PAI-1 protects different organs from fibrosis in response to injury-related profibrotic signals. Thus, PAI-1 is implicated in the pathology of fibrosis in different organs including the heart, lung, kidney, liver, and skin. Paradoxically, PAI-1 deficiency promotes spontaneous cardiac-selective fibrosis. In this review, we discuss the significance of PAI-1 in the pathogenesis of fibrosis in multiple organs.  相似文献   

7.
Human diploid fibroblasts were seeded onto or into plasma clots and different aspects of cell adhesion and migration were measured. The roles of plasminogen activators and plasmin were studied by either the removal of plasminogen from plasma prior to clotting or by the addition of 10 mM epsilon-aminocaproic acid, which brings about an inhibition of plasmin in this system. When cells were seeded onto the surface of plasma clots, rates of attachment, spreading, and migration were unaffected by plasminogen depletion or plasmin inhibition. In contrast, when cells were seeded into plasma clots, then, although the rates of cells spreading were unaffected, cell migration was abolished by plasminogen depletion or by plasmin inhibition. When cells were seeded onto the surface of plasma clots and the rate of migration into the clots was measured, there was an absolute requirement for plasmin activity; while fibroblasts migrated rapidly into the fibrin lattice of control clots, in the case of plasminogen-depleted clots, cells failed to penetrate the lattice. Focussing through a plasma clot revealed that fibroblasts do not migrate through the fibrin lattice but instead, localized areas of fibrinolysis are generated and cells migrate over the surface of the area of lysis.  相似文献   

8.
Interleukin-4 (IL-4) is one of the products of T-lymphocytes and mast cells, inflammatory cells which accumulate in connective tissues at early stages of fibrosis. We tested the effects of IL-4 on human fibroblasts from normal and scleroderma skin seeded in three dimensional collagen lattices ("dermal equivalents"). IL-4 (10 and 100 U/ml) stimulated collagen synthesis in a dose-dependent manner. No significant alteration of lattice retraction and cell proliferation was observed. At the concentration 100 U/ml, Il-4 was approximately twice more efficient on collagen synthesis than Transforming Growth Factor beta (10 ng/ml). IL-4 secretion in connective tissues might be an important factor for the development of fibrotic processes.  相似文献   

9.
Skin fibroblasts from eight scleroderma patients were seeded in collagen lattices, and their capacity of retraction was compared to that of fibroblasts from normal volunteers. In all cases, pathological fibroblasts retracted collagen lattices earlier and more intensively than controls. This in vitro feature may be related to the cutaneous retraction which characterizes scleroderma lesions in vivo.  相似文献   

10.
Transforming growth factor (TGF)-beta plays an important role in tissue fibrogenesis. We previously demonstrated that reduced glutathione (GSH) supplementation blocked collagen accumulation induced by TGF-beta in NIH-3T3 cells. In the present study, we show that supplementation of GSH restores the collagen degradation rate in TGF-beta-treated NIH-3T3 cells. Restoration of collagen degradation by GSH is associated with a reduction of type I plasminogen activator inhibitor (PAI)-1 expression/activity as well as recovery of the activities of cell/extracellular matrix-associated tissue-type plasminogen activator and plasmin. Furthermore, we find that NIH-3T3 cells constitutively express plasminogen mRNA and possess plasmin activity. Blockade of cell surface binding of plasminogen/plasminogen activation with tranexamic acid (TXA) or inhibition of plasmin activity with aprotinin significantly reduces the basal level of collagen degradation both in the presence or absence of exogenous plasminogen. Most importantly, addition of TXA or active PAI-1 almost completely eliminates the restorative effects of GSH on collagen degradation in TGF-beta treated cells. Together, our results suggest that the major mechanism by which GSH restores collagen degradation in TGF-beta-treated cells is through blocking PAI-1 expression, leading to increased PA/plasmin activity and consequent proteolytic degradation of collagens. This study provides mechanistic evidence for GSH's putative therapeutic effect in the treatment of fibrotic disorders.  相似文献   

11.
A numerical model based on the convective-diffusive transport of reacting and adsorbing proteolytic enzymes within erodible fibrous biopolymers was used to predict lysis fronts moving across biogels such as fibrin or collagen. The fiber structure and the transport properties of solutes in fibrin (or collagen) were related to the local extent of dissolution within the dissolving structure. An accounting for solubilization of adsorbed species into solution from the eroding fiber phase provided for complete conservation of mass in reacting systems containing over 10 species. At conditions of fibrinolysis typical of clinical situations, the model accurately predicted the dynamic rate of lysis front movement for plasmin, urokinase, and tissue plasminogen activator (tPA)-mediated lysis of fibrin gels measured in vitro. However, under conditions of extremely fast fibrinolysis using high enzyme concentrations, fibrinolytic fronts moved very rapidly (>0.1 mm/mm)-faster than predicted for diffusionlimited reactions-at nearly constant velocity for over 2 h, indicating non-Fickian behavior. This was due to proteolysis-mediated retraction of dissolving fibrin fibers that resulted in fiber convection and front-sharpening within 3 mum of the reaction front, as observed by digitally enhanced microscopy. In comparing the model to fibrinolysis measurements using human lys(77)-plasmin, the average first order rate constant for non-crosslinked fibrin bond cleavage by fibrin-bound plasmin was calculated to be 5s(-1) assuming that 10 cleavages per fibrin monomer were required to solubilize each monomer. The model accurately predicted lysis front movement using pressure-driven permeation of plasmin or urokinase into fibrin as well as literature data obtained under well- mixed conditions for tPA-mediated fibrinolysis. This numerical formulation provides predictive capability for optimization of proteolytic systems which include thrombolytic therapy, wound healing, controlled drug release, and tissue engineering applications. (c) 1995 John Wiley & Sons, Inc.  相似文献   

12.
Human skin fibroblasts were cultivated in confluent monolayers, retracting collagen lattices, retracting fibrin lattices and non-retracting fibrin lattices and the expression of messenger RNA specific for the alpha 1 chain of type I procollagen comparatively studied by Northern blot and dot blot hybridization. Two factors contribute to the lower level of procollagen messenger RNA in collagen lattices: the retraction and the nature of the fibrillar protein that constitutes the lattices. Fibrin lattices, when they do not retract, make as much collagen and procollagen mRNA as monolayer confluent cells.  相似文献   

13.
Urokinase plasminogen activator (uPA) converts plasminogen to plasmin, resulting in a proteolytic cascade that has been implicated in tissue destruction during inflammation. Periodontitis is a highly prevalent chronic inflammatory disease characterized by destruction of the tissue and bone that support the teeth. We demonstrate that stimulation of macrophages with the arginine- and lysine-specific cysteine protease complex (RgpA-Kgp complex), produced by the keystone pathogen Porphyromonas gingivalis, dramatically increased their ability to degrade matrix in a uPA-dependent manner. We show that the RgpA-Kgp complex cleaves the inactive zymogens, pro-uPA (at consensus sites Lys158-Ile159 and Lys135-Lys136) and plasminogen, yielding active uPA and plasmin, respectively. These findings are consistent with activation of the uPA proteolytic cascade by P. gingivalis being required for the pathogen to induce alveolar bone loss in a model of periodontitis and reveal a new host-pathogen interaction in which P. gingivalis activates a critical host proteolytic pathway to promote tissue destruction and pathogen virulence.  相似文献   

14.
12-O-Tetradecanoylphorbol-13-acetate (TPA) suppresses the proliferation of the human breast epithelial cell line MCF10A-Neo by initiating proteolytic processes that activate latent transforming growth factor (TGF)-beta in the serum used to supplement culture medium. Within 1 h of treatment, cultures accumulated an extracellular activity capable of cleaving a substrate for urokinase-type plasminogen activator (uPA) and tissue plasminogen activator (tPA). This activity was inhibited by plasminogen activator inhibitor-1 or antibodies to uPA but not tPA. Pro-uPA activation was preceded by dramatic changes in lysosome trafficking and the extracellular appearance of cathepsin B and beta-hexosaminidase but not cathepsins D or L. Co-treatment of cultures with the cathepsin B inhibitors CA-074 or Z-FA-FMK suppressed the cytostatic effects of TPA and activation of pro-uPA. In the absence of TPA, exogenously added cathepsin B activated pro-uPA and suppressed MCF10A-Neo proliferation. The cytostatic effects of both TPA and cathepsin B were suppressed in cells cultured in medium depleted of plasminogen/plasmin or supplemented with neutralizing TGF-beta antibody. Pretreatment with cycloheximide did not suppress the exocytosis of cathepsin B or the activation of pro-uPA. Hence, TPA activates signaling processes that trigger the exocytosis of a subpopulation of lysosomes/endosomes containing cathepsin B. Subsequently, extracellular cathepsin B initiates a proteolytic cascade involving uPA, plasminogen, and plasmin that activates serum-derived latent TGF-beta.  相似文献   

15.
Matrix metalloproteinase (MMP) family proteins play diverse roles in many aspects of cellular processes such as osteoblastic differentiation. Besides, mechanical forces that occur in 3D collagen gel promote the osteoblastic phenotype and accelerate matrix mineralization. Although MMPs have been involved in bone differentiation, the proteolytic cascades triggered by mechanical forces are still not well characterized. In this study, we have investigated the contribution of both proteolytic cascades, MMP-3/MMP-1 and MMP-2/MMP-13/MT1-MMP in the differentiation of human osteoblasts cultured in a floating type I collagen lattice (FL) versus an attached collagen lattice (AL). Compared to AL, contraction of human osteoblasts-populated FL led to a fast (1 day) induction of alkaline phosphatase (ALP), bone sialoprotein (BSP), osteoprotegerin (OPG), and Runx-2 expression. At day 4, osteocalcin (OC) overexpression preceded the formation of calcium-containing nodule formation as assessed by X-ray analyses. MMP-1 and MMP-3 were produced to similar extent by cells cultured in FL and AL, whereas contraction of collagen lattices triggered both mRNA overexpression of MMP-2, MMP-13, and MT1-MMP (i.e., MMP-14), and their activation as evidenced by Western blotting or zymographic analyses. Down-regulating MT1-MMP expression or activity either by siRNA transfection or supplementation of culture medium with TIMP-1 or TIMP-2 highlighted the contribution of that enzyme in OC, ALP, and OPG expression. MMP-2 and MMP-13 were more directly involved in BSP expression. So, these results suggest that the main proteolytic cascade, MMP-2/MMP-13/MT1-MMP, and more particularly, its initial regulator MT1-MMP is involved in osteoblast differentiation through mechanical forces.  相似文献   

16.
Cell culture in collagen lattice is known to be a more physiological model than monolayer for studying the regulation of extracellular matrix protein deposition. The synthesis of sulfated glycosaminoglycans (GAG) and dermatan sulfate (DS) proteoglycans by 3 cell strains were studied in confluent monolayers grown on plastic surface, in comparison to fully retracted collagen lattices. Cells were labelled with35S-sulfate, followed by GAG and proteoglycan analysis by cellulose acetate and SDS-polyacrylamide gel electrophoresis, respectively. The 3 cell strains contracted the lattice in a similar way. In monolayer cultures, the major part of GAG was secreted into culture medium whereas in lattice cultures of dermal fibroblasts and osteosarcoma MG-63 cells but not fibrosarcoma HT-1080 cells, a higher proportion of GAGs, including dermatan sulfate, was retained within the lattices. Small DS proteoglycans, decorin and biglycan, were detected in fibroblasts and MG-63 cultures. They were preferentially trapped within the collagen gel. In retracted lattices, decorin had a higher Mr than in monolayer. Biglycan was detected in monolayer and lattice cultures of MG-63 cells but in lattice cultures only in the case of fibroblasts. In this last case, an up regulation of biglycan mRNA steady state level and down regulation of decorin mRNA was observed, in comparison to monolayers, indicating that collagen can modulate the phenotypical expression of small proteoglycan genes.Supported by a fellowship from the Centre National de la Recherche Scientifique  相似文献   

17.
Metastasizing tumor cells invade host tissues by degrading extracellular matrix constituents. We report here that the highly sulfated glycosaminoglycans, heparin and heparan sulfate, as well as the sulfated polysaccharide, fucoidan, significantly enhanced tumor cell invasionin vitrointo fibrin, the basement membrane extract, Matrigel, or through a basement membrane-like extracellular matrix. The enhancement of tumor cell invasion was due to a stimulation of the proteolytic cascade of plasminogen activation since the effect required plasminogen activation and was abolished by inhibitors of urokinase-type plasminogen activator (uPA) or plasmin. Sulfated polysaccharides enhanced five reactions of tumor-cell initiated plasminogen activation in a dose-dependent manner. They amplified plasminogen activation in culture supernatants up to 70-fold by stimulating (i) pro-uPA activation by plasmin and (ii) plasminogen activation by uPA. (iii) In addition, sulfated polysaccharides partially protected plasmin from inactivation by α2-antiplasmin. Sulfated polysaccharides also stimulated tumor-cell associated plasminogen activation, e.g., (iv) cell surface pro-uPA activation by plasmin and (v) plasminogen activation by cell surface uPA. These results suggest that sulfated glycosaminoglycans liberated by tumor-cell mediated extracellular matrix degradationin vivomight amplify pericellular plasminogen activation and locally enhance tumor cell invasion in a positive feedback manner.  相似文献   

18.
Mechanical behavior of fibroblasts included in collagen lattices   总被引:1,自引:0,他引:1  
Striae distensae are characterized by linear, smooth bands of atrophic-appearing skin. Excessive steroid activity, genetic and mechanical factors and inherited defects of connective tissues are the most frequent causes of this disease. Fibroblasts derived from women presenting striae distensae lesions were included into collagen gels to study their mechanical behavior: capacity to contract free-floating lattices and to produce isometric force in tense lattices. To measure the retracted lattice diameter, the culture dishes were placed on a transparent metric scale. An isometric force system was used to study quantitatively the forces developed during lattice contraction. alpha 2 beta 1 integrins expression (transmembrane receptors) was evaluated by flux cytometry. Striae distensae fibroblasts contract collagen gels slower than normal human fibroblasts but the final contraction is similar. They produce a greater isometric force which is associated with enhanced alpha 2 beta 1 integrins expression. By their mechanical properties, striae distensae fibroblasts appear as a different population from normal fibroblasts.  相似文献   

19.
The effect of heparin on the proteolytic and fibrinolytic activities of plasmin and plasminogen was studied. Heparin at a concentration of 6.3.10(-6) M did not change the caseinolytic activity of plasmin and plasminogen stimulated by streptokinase but suppressed their fibrinolytic activity. At concentrations from 2.10(-8) to 0.5.10(-6) M heparin increased, whereas at 1.10(-6)-4.10(-6) M reduced the time of desAAfibrin clot half-lysis by plasmin. Within the concentration range of 2.10(-8) to 4.10(-6) M heparin did not change the time of the clot half-lysis by glu-plasminogen and slightly decreased the time of fibrin clot half-lysis by lys-plasminogen in the presence of the tissue activator. It was supposed that heparin inhibits the fibrinolytic effect of plasmin by way of formation of complexes with plasmin and reduction of plasmin specificity to the solid phase substrate, i. e., polymeric fibrin.  相似文献   

20.
Dermal fibroblasts cultivated in tridimensional matrices (lattices) of collagen exhibit a very low metabolic activity, and a low protein synthesis in particular. We have previously shown that ribosomal RNA content and half-life were decreased in collagen lattice cultured fibroblasts when compared to monolayer cultured fibroblasts. In this study, we seeded fibroblasts in collagen lattices and investigated the influence of matrix on the number of nucleolar organizing regions. We found that fibroblasts in fully retracted lattices exhibited a significant decrease of 45 % (P < 0.001) in the number of nucleolar organizing regions when compared to monolayer cultured fibroblasts. This decrease was correlated to the decrease in ribosomal RNA content. These data suggest that extracellular matrix induces early alterations of synthesis and/or processing of ribosomal RNAs, explaining, at least partly, the resulting low metabolic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号