首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Catalytic activity and function of acetylcholinesterase (AChE; EC 3.1.1.7) have been recognized and studied for over a century and its quaternary and primary structures for about half a century, and its tertiary structure has been known for about 33 years. Clear understanding of relationships between the structure and the function is still pending for this enzyme. Hundreds of crystallographic, static snapshots of AChEs from different sources reveal largely one general backbone conformation with narrow entry into the active center gorge, tightly fit to accept one acetylcholine (ACh) molecule, in contrast to its high catalytic turnover. This short review of available X-ray structures of AChEs from electric ray Torpedo californica, mouse and human, finds some limited, yet consistent deviations in conformations of selected secondary structure elements of AChE relevant for its function. The observed conformational diversity of the acyl pocket loop of AChE, unlike the large Ω-loop, appears consistent with structurally dynamic INS data and solution-based SAXS experiments to explain its dominant role in controlling the size of the active center gorge opening, as well as connectivity between the immediate surroundings of the buried active Ser, and catalytically relevant sites on the AChE surface.

  相似文献   


2.
The attribution of incentive salience to reward‐predictive stimuli has been shown to be associated with substance abuse‐like behavior such as increased drug taking. Evidence suggests that glutamate neurotransmission and sequential N‐methyl‐D‐aspartate (NMDA) activation are involved in the attribution of incentive salience. Here, we further explore the role of second‐by‐second glutamate neurotransmission in the attribution of incentive salience to reward‐predictive stimuli by measuring sign‐tracking behavior during a Pavlovian conditioned approach procedure using ceramic‐based microelectrode arrays configured for sensitive measures of extracellular glutamate in awake behaving Sprague‐Dawley rats. Specifically, we show that there is an increase in extracellular glutamate levels in the prelimbic cortex (PrL) and the nucleus accumbens core (NAcC) during sign‐tracking behavior to a food‐predictive conditioned stimulus (CS+) compared to the presentation of a non‐predictive conditioned stimulus (CS?). Furthermore, the results indicate greater increases in extracellular glutamate levels in the PrL compared to NAcC in response to the CS+, including differences in glutamate release and signal decay. Taken together, the present research suggests that there is differential glutamate signaling in the NAcC and PrL during sign‐tracking behavior to a food‐predictive CS+.

  相似文献   

3.
People bitten by Alpine vipers are usually treated with antivenom antisera to prevent the noxious consequences caused by the injected venom. However, this treatment suffers from a number of drawbacks and additional therapies are necessary. The venoms of Vipera ammodytes and of Vipera aspis are neurotoxic and cause muscle paralysis by inducing neurodegeneration of motor axon terminals because they contain a presynaptic acting sPLA2 neurotoxin. We have recently found that any type of damage to motor axons is followed by the expression and activation of the intercellular signaling axis consisting of the CXCR4 receptor present on the membrane of the axon stump and of its ligand, the chemokine CXCL12 released by activated terminal Schwann cells. We show here that also V. ammodytes and V. aspis venoms cause the expression of the CXCL12-CXCR4 axis. We also show that a small molecule agonist of CXCR4, dubbed NUCC-390, induces a rapid regeneration of the motor axon terminal with functional recovery of the neuromuscular junction. These findings qualify NUCC-390 as a promising novel therapeutics capable of improving the recovery from the paralysis caused by the snakebite of the two neurotoxic Alpine vipers.

  相似文献   


4.
Major depressive disorder is a common form of mental illness. Many brain regions are implicated in the pathophysiology and symptomatology of depression. Among key brain areas is the striatum that controls reward and mood and is involved in the development of core depression‐like behavior in animal models of depression. While molecular mechanisms in this region underlying depression‐related behavior are poorly understood, the glutamatergic input to the striatum is believed to play a role. In this study, we investigated changes in metabotropic glutamate (mGlu) receptor expression and signaling in the striatum of adult rats in response to prolonged (10–12 weeks) social isolation, a pre‐validated animal paradigm modeling depression in adulthood. We found that mGlu5 receptor protein levels in the striatum were increased in rats that showed typical depression‐ and anxiety‐like behavior after chronic social isolation. This increase in mGlu5 receptor expression was seen in both subdivisions of the striatum, the nucleus accumbens and caudate putamen. At subcellular and subsynaptic levels, mGlu5 receptor expression was elevated in surface membranes at synaptic sites. In striatal neurons, the mGlu5‐associated phosphoinositide signaling pathway was augmented in its efficacy after prolonged social isolation. These data indicate that the mGlu5 receptor is a sensitive substrate of depression. Adulthood social isolation leads to the up‐regulation of mGlu5 receptor expression and function in striatal neurons.

  相似文献   

5.
The basal forebrain cholinergic neurons provide acetylcholine to the cortex via large projections. Recent molecular imaging work in humans indicates that the cortical cholinergic innervation is not uniformly distributed, but rather may disproportionately innervate cortical areas relevant to supervisory attention. In this study, we therefore reexamined the spatial relationship between acetylcholinergic modulation and attention in the human cortex using meta-analytic strategies targeting both pharmacological and non-pharmacological neuroimaging studies. We found that pharmaco-modulation of acetylcholine evoked both increased activity in the anterior cingulate and decreased activity in the opercular and insular cortex. In large independent meta-analyses of non-pharmacological neuroimaging research, we demonstrate that during attentional engagement these cortical areas exhibit (1) task-related co-activation with the basal forebrain, (2) task-related co-activation with one another, and (3) spatial overlap with dense cholinergic innervations originating from the basal forebrain, as estimated by multimodal positron emission tomography and magnetic resonance imaging. Finally, we provide meta-analytic evidence that pharmaco-modulation of acetylcholine also induces a speeding of responses to targets with no apparent tradeoff in accuracy. In sum, we demonstrate in humans that acetylcholinergic modulation of midcingulo-insular hubs of the ventral attention/salience network via basal forebrain afferents may coordinate selection of task relevant information, thereby facilitating cognition and behavior.

  相似文献   


6.
《Journal of neurochemistry》2019,149(5):559-561
We are very sad that the ISN lost its President Kazuhiro Ikenaka, Professor and Chairman at National Institute for Physiological Sciences (NIPS), Director of Okazaki Institute of Integrative Biology. JNeurochem published an Obituary to value his outstanding achievements: Akio Wanaka et al. (2019) OBITUARY Kazuhiro Ikenaka (1952‐2018). https://doi.org/10.1111/jnc.14679

  相似文献   


7.
Beta‐adrenoceptors (β2‐AR s) have beneficial effects on prefrontal cortex (PFC ) working memory, however, the cellular and molecular mechanisms are unclear yet. In this study, we probed the effect of β2‐AR ‐selective agonist clenbuterol (Clen) on synaptic transmission in layer 5/6 pyramidal neurons of PFC . Bath application of Clen reduced spontaneous IPSC (sIPSC ) frequency without effects on sEPSC s. Clen did not alter the frequency and amplitude of miniature IPSC s (mIPSC s), but exerted heterogeneous effects on evoked IPSC s (eIPSC s) recorded from PFC layer 5/6 pyramidal neurons. Clen decreased the firing rate of action potentials of fast‐spiking GABA ergic interneurons. Clen‐induced hyperpolarization of fast‐spiking GABA ergic interneurons required potentiation of an inward rectifier K+ channels. Clen‐induced hyperpolarization of fast‐spiking interneurons was dependent on Gs protein rather than cAMP and protein kinase A. Our findings demonstrate that Clen (10 μM) enhances inward rectifier K+ channels via Gs protein to cause membrane hyperpolarization of fast‐spiking GABA ergic interneurons resulting in reduction of action potentials firing rate to reduce GABA ergic transmission.

  相似文献   

8.
It has been well‐known that hypothalamic orexigenic neuropeptides, orexin‐A, and melanin‐concentrating hormone (MCH), play important roles in regulation of gastric function. However, what neural pathway mediated by the two neuropeptides affects the gastric function remains unknown. In this study, by way of nucleic stimulation and extracellular recording of single unit electrophysiological properties, we found that electrically stimulating the lateral hypothalamic area (LH) or microinjection of orexin‐A into the arcuate nucleus (ARC) excited most gastric distension‐responsive neurons in the nuclei and enhanced the gastric function including motility, emptying, and acid secretion of conscious rats. The results indicated that LH‐ARC orexin‐A‐ergic projections may exist and the orexin‐A in the ARC affected afferent and efferent signal transmission between ARC and stomach. As expected, combination of retrograde tracing and immunohistochemistry showed that some orexin‐A‐ergic neurons projected from the LH to the ARC. In addition, microinjection of MCH and its receptor antagonist PMC‐3881‐PI into the ARC affected the role of orexin‐A in the ARC, indicating a possible involvement of the MCH pathway in the orexin‐A role. Our findings suggest that there was an orexin‐A‐ergic pathway between LH and ARC which participated in transmitting information between the central nuclei and the gastrointestinal tract and in regulating the gastric function of rats.

  相似文献   

9.
Purines are metabolic building blocks essential for all living organisms on earth. De novo purine biosynthesis occurs in the brain and appears to play important roles in neural development. Phosphoribosyl formylglycinamidine synthase (FGAMS , also known as PFAS or FGARAT ), a core enzyme involved in the de novo synthesis of purines, may play alternative roles in viral pathogenesis. To date, no thorough investigation of the endogenous expression and localization of de novo purine biosynthetic enzymes has been conducted in human neurons or in virally infected cells. In this study, we characterized expression of FGAMS using multiple neuronal models. In differentiated human SH ‐SY 5Y neuroblastoma cells, primary rat hippocampal neurons, and in whole‐mouse brain sections, FGAMS immunoreactivity was distributed within the neuronal cytoplasm. FGAMS immunolabeling in vitro demonstrated extensive distribution throughout neuronal processes. To investigate potential changes in FGAMS expression and localization following viral infection, we infected cells with the human pathogen herpes simplex virus 1. In infected fibroblasts, FGAMS immunolabeling shifted from a diffuse cytoplasmic location to a mainly perinuclear localization by 12 h post‐infection. In contrast, in infected neurons, FGAMS localization showed no discernable changes in the localization of FGAMS immunoreactivity. There were no changes in total FGAMS protein levels in either cell type. Together, these data provide insight into potential purine biosynthetic mechanisms utilized within neurons during homeostasis as well as viral infection.

Cover Image for this Issue: doi: 10.1111/jnc.14169 .
  相似文献   

10.
Synaptic dysfunction and neuronal death are responsible for cognitive and behavioral deficits in Alzheimer's disease (AD). It is well known that such neurological abnormalities are preceded by long‐term exposure of amyloid β‐peptide (Aβ) and/or hyperphosphorylated tau prior. In addition to the neurological deficit, astrocytes as a major glial cell type in the brain, significantly participate in the neuropathogenic mechanisms underlying synaptic modulation. Although astrocytes play a significant key role in modulating synaptic transmission, little is known on whether astrocyte dysfunction caused by such long‐term Aβ exposure affects synapse formation and function. Here, we show that synapse formation and synaptic transmission are attenuated in hippocampal‐naïve neurons co‐cultured with astrocytes that have previously experienced chronic Aβ1‐40 exposure. In this abnormal astrocytic condition, hippocampal neurons exhibit decrements of evoked excitatory post‐synaptic currents (EPSCs) and miniature EPSC frequency. Furthermore, size of readily releasable synaptic pools and number of excitatory synapses were also significantly decreased. Contrary to these negative effects, release probability at individual synapses was significantly increased in the same astrocytic condition. Taken together, our data indicate that lower synaptic transmission caused by astrocytes previously, and chronically, exposed to Aβ1–40 is attributable to a small number of synapses with higher release probability.

  相似文献   

11.
Depression has been associated with a low‐grade chronic inflammatory state, suggesting a potential therapeutic role for anti‐inflammatory agents. Fisetin is a naturally occurring flavonoid in strawberries that has anti‐inflammatory activities, but whether fisetin has antidepressant effects is unknown. In this study, we exposed mice to spatial restraint for 2 weeks with or without treatment with fisetin. Immobility time in the forced swimming and tail suspension test after this restraint increased in the untreated group, but this increase did not occur in the fisetin group. We administered fisetin to Abelson helper integration site‐1 (Ahi1) knockout mice, which have depressive phenotypes. We found that fisetin attenuated the depressive phenotype of these Ahi1 knockout mice. We further investigated the potential mechanism of fisetin's antidepressant effects. Because TrkB is a critical signaling pathway in the mechanisms of depression, we examined whether phosphorylated TrkB was involved in the antidepressant effects of fisetin. We found that fisetin increased phosphorylated TrkB level without altering total TrkB; this increase was attenuated by K252a, a specific TrkB inhibitor. Taken together, our results demonstrated that fisetin may have therapeutic potential for treating depression and that this antidepressant effect may be mediated by the activation of the TrkB signaling pathway.

  相似文献   

12.
Neurotensin is known to inhibit neuronal Na+, K+‐ATPase, an effect that is rescued by nitric oxide (NO) synthase inhibition. However, whether the neurotensinergic and the nitrergic systems are independent pathways, or are mechanistically linked, remains unknown. Here, we addressed this issue and found that the administration of low affinity neurotensin receptor (NTS2) antagonist, levocabastine (50 μg/kg, i.p.) inhibited NO synthase (NOS) activity by 74 and 42% after 18 h in synaptosomal and mitochondrial fractions isolated from the Wistar rat cerebral cortex, respectively; these effects disappeared 36 h after levocabastine treatment. Intriguingly, whereas neuronal NOS protein abundance decreased (by 56%) in synaptosomes membranes, it was enhanced (by 86%) in mitochondria 18 h after levocabastine administration. Levocabastine enhanced the respiratory rate of synaptosomes in the presence of oligomycin, but it failed to alter the spare respiratory capacity; furthermore, the mitochondrial respiratory chain (MRC) complexes I–IV activities were severely diminished by levocabastine administration. The inhibition of NOS and MRC complexes activities were also observed after incubation of synaptosomes and mitochondria with levocabastine (1 μM) in vitro. These data indicate that the NTS2 antagonist levocabastine regulates NOS expression and activity at the synapse, suggesting an interrelationship between the neurotensinergic and the nitrergic systems. However, the bioenergetics effects of NTS2 activity inhibition are likely to be independent from the regulation of NO synthesis.

  相似文献   

13.
Previous studies have implicated the role of Purkinje cells in motor learning and the underlying mechanisms have also been identified in great detail during the last decades. Here we report that cyclin‐dependent kinase 5 (Cdk5)/p35 in Purkinje cell also contributes to synaptic plasticity. We previously showed that p35?/? (p35 KO) mice exhibited a subtle abnormality in brain structure and impaired spatial learning and memory. Further behavioral analysis showed that p35 KO mice had a motor coordination defect, suggesting that p35, one of the activators of Cdk5, together with Cdk5 may play an important role in cerebellar motor learning. Therefore, we created Purkinje cell‐specific conditional Cdk5/p35 knockout (L7‐p35 cKO) mice, analyzed the cerebellar histology and Purkinje cell morphology of these mice, evaluated their performance with balance beam and rota‐rod test, and performed electrophysiological recordings to assess long‐term synaptic plasticity. Our analyses showed that Purkinje cell‐specific deletion of Cdk5/p35 resulted in no changes in Purkinje cell morphology but severely impaired motor coordination. Furthermore, disrupted cerebellar long‐term synaptic plasticity was observed at the parallel fiber‐Purkinje cell synapse in L7‐p35 cKO mice. These results indicate that Cdk5/p35 is required for motor learning and involved in long‐term synaptic plasticity.

  相似文献   


14.
Female hypocretin knockout (Hcrt KO) mice have increased body weight despite decreased food intake compared to wild type (WT) mice. In order to understand the nature of the increased body weight, we carried out a detailed study of Hcrt KO and WT, male, and female mice. Female KO mice showed consistently higher body weight than WT mice, from 4 to 20 months (20–60%). Fat, muscle, and free fluid levels were all significantly higher in adult (7–9 months) as well as old (18–20 months) female KO mice compared to age‐matched WT mice. Old male KO mice showed significantly higher fat content (150%) compared to age‐matched WT mice, but no significant change in body weight. Respiratory quotient (?19%) and metabolic rates (?14%) were significantly lower in KO mice compared to WT mice, regardless of gender or age. Female KO mice had significantly higher serum leptin levels (191%) than WT mice at 18–20 months, but no difference between male mice were observed. Conversely, insulin resistance was significantly higher in both male (73%) and female (93%) KO mice compared to age‐ and sex‐matched WT mice. We conclude that absence of the Hcrt peptide has gender‐specific effects. In contrast, Hcrt‐ataxin mice and human narcoleptics, with loss of the whole Hcrt cell, show weight gain in both sexes.

  相似文献   


15.
Pleiotrophin (PTN) is a cytokine with important roles in dopaminergic neurons. We found that an acute ethanol (2.0 g/kg, i.p.) administration causes a significant up‐regulation of PTN mRNA and protein levels in the mouse prefrontal cortex, suggesting that endogenous PTN could modulate behavioural responses to ethanol. To test this hypothesis, we studied the behavioural effects of ethanol in PTN knockout (PTN?/?) mice and in mice with cortex‐ and hippocampus‐specific transgenic PTN over‐expression (PTN‐Tg). Ethanol (1.0 and 2.0 g/kg) induced an enhanced conditioned place preference in PTN?/? compared to wild type mice, suggesting that PTN prevents ethanol rewarding effects. Accordingly, the conditioning effects of ethanol were completely abolished in PTN‐Tg mice. The ataxic effects induced by ethanol (2.0 g/kg) were not affected by the genotype. However, the sedative effects of ethanol (3.6 g/kg) tested in a loss of righting reflex paradigm were significantly reduced in PTN‐Tg mice, suggesting that up‐regulation of PTN levels prevents the sedative effects of ethanol. These results indicate that PTN may be a novel genetic factor of importance in alcohol use disorders, and that potentiation of the PTN signalling pathway may be a promising therapeutic strategy in the treatment of these disorders.

  相似文献   


16.
Stroke is a devastating clinical condition for which an effective neuroprotective treatment is currently unavailable. S‐allyl cysteine (SAC), the most abundant organosulfur compound in aged garlic extract, has been reported to possess neuroprotective effects against stroke. However, the mechanisms underlying its beneficial effects remain poorly defined. The present study tests the hypothesis that SAC attenuates ischemic neuronal injury by activating the nuclear factor erythroid‐2‐related factor 2 (Nrf2)‐dependent antioxidant response in both in vitro and in vivo models. Our findings demonstrate that SAC treatment resulted in an increase in Nrf2 protein levels and subsequent activation of antioxidant response element pathway genes in primary cultured neurons and mice. Exposure of primary neurons to SAC provided protection against oxygen and glucose deprivation‐induced oxidative insults. In wild‐type (Nrf2+/+) mice, systemic administration of SAC attenuated middle cerebral artery occlusion‐induced ischemic damage, a protective effect not observed in Nrf2 knockout (Nrf2?/?) mice. Taken together, these findings provide the first evidence that activation of the Nrf2 antioxidant response by SAC is strongly associated with its neuroprotective effects against experimental stroke and suggest that targeting the Nrf2 pathway may provide therapeutic benefit for the treatment of stroke.

  相似文献   


17.
18.
Chromogranin A and B (Cgs) are considered to be master regulators of cargo sorting for the regulated secretory pathway (RSP ) and dense‐core vesicle (DCV ) biogenesis. To test this, we analyzed the release of neuropeptide Y (NPY )‐pH luorin, a live RSP reporter, and the distribution, number, and appearance of DCV s, in mouse hippocampal neurons lacking expression of CHGA and CHGB genes. qRT ‐PCR analysis showed that expression of other granin family members was not significantly altered in CgA/B?/? neurons. As synaptic maturation of developing neurons depends on secretion of trophic factors in the RSP , we first analyzed neuronal development in standardized neuronal cultures. Surprisingly, dendritic and axonal length, arborization, synapse density, and synaptic vesicle accumulation in synapses were all normal in CgA/B?/? neurons. Moreover, the number of DCV s outside the soma, stained with endogenous marker Secretogranin II , the number of NPY ‐pH luorin puncta, and the total amount of reporter in secretory compartments, as indicated by pH ‐sensitive NPY ‐pH luorin fluorescence, were all normal in CgA/B?/? neurons. Electron microscopy revealed that synapses contained a normal number of DCV s, with a normal diameter, in CgA/B?/? neurons. In contrast, CgA/B?/? chromaffin cells contained fewer and smaller secretory vesicles with a smaller core size, as previously reported. Finally, live‐cell imaging at single vesicle resolution revealed a normal number of fusion events upon bursts of action potentials in CgA/B?/? neurons. These events had normal kinetics and onset relative to the start of stimulation. Taken together, these data indicate that the two chromogranins are dispensable for cargo sorting in the RSP and DCV biogenesis in mouse hippocampal neurons.

  相似文献   

19.
Monoamine neurotransmitters should be immediately removed from the synaptic cleft to avoid excessive neuronal activity. Recent studies have shown that astrocytes and neurons are involved in monoamine removal. However, the mechanism of monoamine transport by astrocytes is not entirely clear. We aimed to elucidate the transporters responsible for monoamine transport in 1321N1, a human astrocytoma‐derived cell line. First, we confirmed that 1321N1 cells transported dopamine, serotonin, norepinephrine, and histamine in a time‐ and dose‐dependent manner. Kinetics analysis suggested the involvement of low‐affinity monoamine transporters, such as organic cation transporter (OCT) 2 and 3 and plasma membrane monoamine transporter (PMAT). Monoamine transport in 1321N1 cells was not Na+/Cl? dependent but was inhibited by decynium‐22, an inhibitor of low‐affinity monoamine transporters, which supported the importance of low‐affinity transporters. RT‐PCR assays revealed that 1321N1 cells expressed OCT3 and PMAT but no other neurotransmitter transporters. Another human astrocytoma‐derived cell line, U251MG, and primary human astrocytes also exhibited the same gene expression pattern. Gene‐knockdown assays revealed that 1321N1 and primary human astrocytes could transport monoamines predominantly through PMAT and partly through OCT3. These results might indicate that PMAT and OCT3 in human astrocytes are involved in monoamine clearance.

  相似文献   


20.
TAR DNA ‐binding protein 43 (TDP ‐43) is an RNA ‐binding protein and a major component of protein aggregates found in amyotrophic lateral sclerosis and several other neurodegenerative diseases. TDP ‐43 exists as a full‐length protein and as two shorter forms of 25 and 35 kD a. Full‐length mutant TDP ‐43s found in amyotrophic lateral sclerosis patients re‐localize from the nucleus to the cytoplasm and in part to mitochondria, where they exert a toxic role associated with neurodegeneration. However, induction of mitochondrial damage by TDP ‐43 fragments is yet to be clarified. In this work, we show that the mitochondrial 35 kD a truncated form of TDP ‐43 is restricted to the intermembrane space, while the full‐length forms also localize in the mitochondrial matrix in cultured neuronal NSC ‐34 cells. Interestingly, the full‐length forms clearly affect mitochondrial metabolism and morphology, possibly via their ability to inhibit the expression of Complex I subunits encoded by the mitochondrial‐transcribed mRNA s, while the 35 kD a form does not. In the light of the known differential contribution of the full‐length and short isoforms to generate toxic aggregates, we propose that the presence of full‐length TDP ‐43s in the matrix is a primary cause of mitochondrial damage. This in turn may cause oxidative stress inducing toxic oligomers formation, in which short TDP ‐43 forms play a major role.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号