首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fixed‐location, split‐beam sonar technology was used successfully to identify adult lake sturgeon Acipenser fulvescens as they moved upstream and downstream for spawning in the Sturgeon River, Michigan, May–June 2004. A Hydroacoustic Technology Inc. Model 241 Split‐Beam Echo Sounder operating at 200 kHz and a single 4 × 10° elliptical‐beam transducer with a near field range of 1.7 m set perpendicular to the river flow was used. Data collected from migrating lake sturgeon included direction of movement, swimming speed, range from transducer, time and date of passage, and target strength. The spawning population of lake sturgeon was estimated to be at 350–400 fish, with almost equal numbers of fish seen moving upstream as downstream. Most fish were recorded moving within the mid‐section of the river, 1.5–1.65 m deep, and swimming speeds upstream were slower than those for downstream moving fish. These results show that spilt‐beam sonar can be applied to lake sturgeon assessments, without the stress of actually handling these large, pre‐spawning fish.  相似文献   

2.
Natural reproduction of pallid sturgeon Scaphirhynchus albus has been limited for decades and a recruitment bottleneck is hypothesized to occur during the larval stage of development. In this study, we evaluated the effects of water velocity and temperature on the swimming activity, energy use, settling behaviour and mortality of endogenously feeding larvae. The swimming activity of drifting sturgeon larvae (i.e., fish exhibiting negative rheotaxis) increased at low water velocity. In subsequent experiments, we observed greater energy depletion and resultant mortality of larvae in no-flow environments (0 cm s−1) compared to tanks with water velocity ranging from 3.5 to 8.3 cm s−1. The growth rate of drifting larvae was positively related to water temperature (18.7–23.3°C), but reduced growth rate at low water temperature (18.7°C) resulted in protracted development that extended average drift duration by ~4 days compared to larvae reared at 23.3°C. This study provides evidence that cooler summer water temperatures, characteristic of present-day conditions in the upper Missouri River, can reduce larval development and extend both the drift duration and distance requirements of S. albus. Moreover, if dispersed into low velocity environments, such as in reservoir headwaters, larvae may experience increased mortality owing to a mismatch between early life stage drift requirements and habitat conditions in the river. Manipulation of water releases to increase seasonal water temperature below dams may aid survival of S. albus larvae by shortening the time and distance spent drifting.  相似文献   

3.
Previous results show that juvenile shortnose sturgeon are steady swimmers and, compared with salmonids, generally have low critical swimming (UCrit) and endurance swimming capacities. Most studies on swimming capacities of sturgeon, and other fishes, include those where fish have only been swum once and the metrics of swimming performance are assessed (e.g., time swum, speed achieved). Under natural conditions, there are ample instances where fish undergo multiple swimming cycles when traversing fish ways, culverts and other sources of fast water flow. While some evidence exists for salmonids, the effects of repeat swimming are not well known for sturgeon. The current study consisted of two experiments. The first examined the UCrit of juvenile shortnose sturgeon following three consecutive swimming trials with a 30 min recovery period between subsequent tests. The second examined the endurance swimming capacities of juvenile shortnose sturgeon following three consecutive swimming trials with a 60 min recovery period between subsequent tests. Our findings indicate that (i) UCrit was consistent (~2 body lengths/s) among swimming trials; (ii) significant individual variation exists between individuals in the endurance swimming trials; and (iii) consistent results exist for individuals across swimming trials in both the UCrit and the endurance swimming tests. These results suggest that juvenile shortnose sturgeon have a high recovery capacity, and their behaviour and morphology likely reflect aspects of their swimming capacities.  相似文献   

4.
Post‐release survival and upstream movement of Gulf of Mexico sturgeon (Acipenser oxyrinchus desotoi) in the Suwannee River, Florida, were examined following induced spawning using carp pituitary extract (CPE). Six mature females (one CPE‐treated and five control) and 12 mature males (five CPE‐treated and seven control) were implanted with ultrasonic tags in March 2001 during their ingress into the Suwannee River. All CPE‐treated sturgeon and 10 of the 12 control fish were relocated using ultrasonic telemetry during 4 months following their release, resulting in 100% survival of treated fish and 83% known survival of control fish. Two control fish (one female and one male) could not be relocated after 2 weeks post‐release. CPE treatment did not result in mortality but did affect upstream movement behavior, with CPE‐treated males moving upstream at a significantly slower rate than control males and females. Similarly, the maximum observed distance that the fish moved upstream differed among control fish (males and females) and treated males, with control fish moving further upstream than CPE‐treated males. The rate of upstream movement for the single CPE‐treated female was similar to the control females and the maximum upstream distance that this female was located was near a putative spawning area. In general, the environmental parameters of temperature, dissolved oxygen, and conductivity differed over the course of the study but did not differ between treatments and sexes. Treating sturgeon with CPE to induce spawning therefore did not cause mortality but did appear to slow the rate of upstream movement and maximum distance moved in male Gulf sturgeon.  相似文献   

5.
Understanding the drift dynamics of pallid sturgeon (Scaphirhynchus albus) early life intervals is critical to evaluating damming effects on sturgeons. However, studying dispersal behavior is difficult in rivers. In stream tanks, we studied the effect of velocity on dispersal and holding ability, estimated swimming height, and used the data to estimate drift distance of pallid sturgeon. Dispersal was by days 0–10 embryos until fish developed into larvae on day 11 after 200 CTU (daily cumulative temperature units). Embryos in tanks with a mean channel velocity of 30.1 cm s−1 and a side eddy could not hold position in the eddy, so current controlled dispersal. Late embryos (days 6–10 fish) dispersed more passes per hour than early embryos (days 0–5 fish) and held position in side eddies when channel velocities were 17.3 cm s−1 or 21.1 cm s−1. Day and night swim‐up and drift by embryos is an effective adaptation to disperse fish in channel flow and return fish from side eddies to the channel. Early embryos swam <0.50 cm above the bottom and late embryos swam higher (mean, 90 cm). A passive drift model using a near bottom velocity of 32 cm s−1 predicted that embryos dispersing for 11 days in channel flow would travel 304 km. Embryos spawned at Fort Peck Dam, Missouri River, must stop dispersal in <330 km or enter Lake Sakakawea, where survival is likely poor. The model suggests there may be a mismatch between embryo dispersal distance and location of suitable rearing habitat. This situation may be common for pallid sturgeon in dammed rivers.  相似文献   

6.
The pallid sturgeon Scaphirhynchus albus conservation propagation program has augmented declining wild populations since the 1990s and the older age classes of hatchery‐origin fish are beginning to reach sexual maturity in the wild. Currently, the majority of the information available on the age and size at first maturity and spawning periodicity for pallid sturgeon in the upper basin is from captive hatchery‐origin pallid sturgeon (i.e. age and size at first maturity and spawning periodicity) or from wild pallid sturgeon artificially spawned in the propagation program (i.e. spawning periodicity). The purpose of this study was to document age and size at first maturity and spawning periodicity of known age hatchery‐origin pallid sturgeon that have reached maturity in the wild. Radio‐tagged pallid sturgeon in the upper Missouri River upstream of Fort Peck Reservoir were serially sampled in the early‐spring over multiple years and assigned to reproductive classifications each year based on sex‐steroid concentrations. The youngest reproductively‐active male hatchery‐origin pallid sturgeon sampled was 14.5 years old and the youngest female was 18. Hatchery‐origin males were observed having annual (N = 3) and biennial (N = 2) reproductive cycles. The observed spawning periodicity was similar to what has been reported elsewhere for the species. The youngest mature fish in this study are older and larger than what has been reported for those retained in captivity, indicating that body size alone is not a reliable predictor of maturity for pallid sturgeon.  相似文献   

7.
Habitat selection has been quantified for age‐0 and adult pallid sturgeon Scaphirhynchus albus Bull. Illinois State Lab. Nat. Hist., 7, 1905, 37, but little is known regarding habitat use of the juvenile fish. The objective of this study was to quantify habitat use and selection of juvenile pallid sturgeon in the Missouri River, Nebraska, USA. Thirty‐seven age‐4 pallid sturgeon with transmitters were released in July of 2014, plus an additional 21 in September, with habitat monitored using biotelemetry. Age‐1 and age‐4 hatchery reared pallid sturgeon were found to avoid areas associated with the outside bend and thalweg habitats that were characterized by rapid water velocity (>1 ms?1), which accounted for 50% of the area in the channelized Missouri River. Age‐1 pallid sturgeon selected an off‐channel habitat and inside bend habitat while age‐4 pallid sturgeon selected an off‐channel and inside bend channel border habitat. Juvenile pallid sturgeon in unaltered rivers have been shown to associate with island tips and sand bars, habitat that is largely absent in the channelized Missouri River. This study indicates that juvenile pallid sturgeon in the Missouri River, Nebraska are selecting habitats with shallow water and slow water velocity, similar to those associated with island tips and sand bars in unaltered reaches.  相似文献   

8.
Ninety to 100% of paddlefish Polyodon spathula were motile just after transfer into distilled water, with a velocity of 175 μm s-1, a flagellar beat frequency of 50 Hz and motility lasting 4–6 min. Similarly, 80–95% of shovelnose sturgeon Scaphirhynchus platorynchus spermatozoa were motile immediately when diluted in distilled water, with a velocity of 200 μm s-1, a flagellar beat frequency of 48 Hz and a period of motility of 2–3 min. In both species, after sperm dilution in a swimming solution composed of 20 mM Tris–HCl (pH 8·2) and 20 mM NaCl, a majority of the samples showed 100% motility of spermatozoa with flagella beat frequency of 50 Hz within the 5 s following activation and a higher velocity than in distilled water. In such a swimming medium, the time of motility was prolonged up to 9 min for paddlefish and 5 min for sturgeon and a lower proportion of sperm cells had damage such as blebs of the flagellar membrane or curling of the flagellar tip, compared with those in distilled water. The shape of the flagellar waves changed during the motility phase, mostly through a restriction at the part of the flagellum most proximal to the head. A rotational movement of whole cells was observed for spermatozoa of both species. There were significant differences in velocity of spermatozoa between swimming media and distilled water and between paddlefish and shovelnose sturgeon.  相似文献   

9.
Fragmentation of the Yellowstone River is hypothesized to preclude recruitment of endangered Scaphirhynchus albus (pallid sturgeon) by impeding upstream spawning migrations and access to upstream spawning areas, thereby limiting the length of free‐flowing river required for survival of early life stages. Building on this hypothesis, the reach of the Yellowstone River affected by Intake Diversion Dam (IDD) is targeted for modification. Structures including a rock ramp and by‐pass channel have been proposed as restoration alternatives to facilitate passage. Limited information on migrations and swimming capabilities of pallid sturgeon is available to guide engineering design specifications for the proposed structures. Migration behavior, pathways (channel routes used during migrations), and swimming capabilities of free‐ranging wild adult pallid sturgeon were examined using radiotelemetry, and complemented with hydraulic data obtained along the migration pathways. Migrations of 12–26% of the telemetered pallid sturgeon population persisted to IDD, but upstream passage over the dam was not detected. Observed migration pathways occurred primarily through main channel habitats; however, migrations through side channels up to 3.9 km in length were documented. The majority of pallid sturgeon used depths of 2.2–3.4 m and mean water velocities of 0.89–1.83 m/s while migrating. Results provide inferences on depths, velocities, and habitat heterogeneity of reaches successfully negotiated by pallid sturgeon that may be used to guide designs for structures facilitating passage at IDD. Passage will provide connectivity to potential upstream spawning areas on the Yellowstone River, thereby increasing the likelihood of recruitment for this endangered species.  相似文献   

10.
Hatchery augmentation has been used to mitigate declines in fish populations worldwide, especially for sturgeon species. Information regarding stocking success including survival, dispersal, and growth of sturgeon post‐stocking may refine sturgeon augmentation programs and facilitate recovery. Pallid sturgeon Scaphirhynchus albus populations have been supplemented by hatchery‐reared stocks for 25 years in the Missouri River, USA. We assessed survival, dispersal patterns, and growth characteristics of post‐stocked pallid sturgeon in the lower Missouri River. Hatchery‐reared pallid sturgeon stocked at age‐1 (4.1%) and > age‐1 (2.9%) were recaptured at a higher frequency than fish stocked at age‐0 (0.3%). Post‐stocking dispersal patterns suggested dispersal range increase as age increased, but individuals tended to remain in the same river segment as their stocking location. Growth rates varied by year class with younger year classes having truncated growth trajectories compared to older year classes. Post‐stock survival of pallid sturgeon varied by age‐at‐stocking and suggest age‐1 survival has declined through time. Augmentation of pallid sturgeon may benefit from considering dispersal from stocking location and by stocking older individuals which appear to have increased survival post‐stocking. A better understanding regarding environmental drivers of growth and specific habitat features used is needed to better predict optimal timing and location of future stockings.  相似文献   

11.
We studied whether juvenile fishes were able to maintain swimming speed and position during simulated river pulsed flows in a laboratory flume. We used a glass flume (15.24 × 0.6 m) with river-rock substrate to determine the longitudinal displacement, movement distances and frequencies, velocity selection, and substrate use of juvenile (SL range: 6.1 ± 0.2 cm) hardhead Mylopharodon conocephalus (n = 13), rainbow trout Oncorhynchus mykiss (n = 11), and Sacramento sucker Catostomus occidentalis (n = 12) during a 100-min flow pulse, as velocity changed from slow to medium, fast, medium, and slow. Fish were capable of maintaining swimming speed and position up to the maximum flume velocity of 0.46 m·s−1, except for one hardhead that impinged on the rear fish screen. Fish swam faster in the flume during the medium and fast intervals than the slow intervals, but fish speeds were similar among the medium and faster intervals, when some fish took cover behind the rock substrate. In comparison with a Brett-type swim-tunnel, fish showed less increase in mean swimming speed as the flume velocity increased. Fish in the flume were able to use the rock substrate as hydraulic cover, decreasing the encountered water velocity, and, presumably, conserving energy.  相似文献   

12.
We investigated the influence of substrate type, water depth, light, and relative water velocity on microhabitat selection in juvenile pallid (Scaphirhynchus albus) and shovelnose (Scaphirhynchus platorynchus) sturgeon. Individual sturgeon were placed in an 18 927 L elliptical flume, and their location was recorded after a 2‐h period. Data were analyzed using exact chi‐square goodness of fit tests and exact tests of independence. Both sturgeon species used substrate, depth, and light in similar proportions. (all comparisons; P > 0.05). Specifically, pallid and shovelnose sturgeon did not use substrate in proportion to its availability (pallid: P = 0.0026; shovelnose: P = 0.0199). Each species used sand substrate more and gravel substrate less than expected based on availability. Additionally, neither species used woody structure. Both species used deep areas in greater proportion than availability while shallow areas were used less than expected based on availability (pallid; P < 0.0001; shovelnose; P = 0.0335). Pallid and shovelnose sturgeon used very dark areas in greater proportion than expected based on availability; however, very light areas were used in lower proportion than expected (P < 0.0001). Overall, neither species changed their use of habitat in relation to a change in water velocity (pallid, all comparisons P > 0.05; shovelnose, all comparisons P > 0.05). This study is the first investigation of juvenile pallid and shovelnose sturgeon habitat selection in a large‐scale artificial stream system. Field studies of microhabitat selection by juvenile pallid and shovelnose sturgeon should be carried out to substantiate the results of this study, and to identify critical habitat for recovery and management of sturgeon species. Due to the extensive range, longevity, and migratory behavior of these fishes, proper management likely requires river improvements that provide sturgeon with access to a broad range of habitat conditions over time, including system‐wide habitat diversity; natural variation in flow, velocity, temperature, and turbidity; high water quality; a broad prey base; free‐flowing river sections which provide suitable spawning and rearing sites, as well as protection from recreational and commercial harvesting.  相似文献   

13.
Stream-dwelling, juvenile Atlantic salmon, Salmo salar L., feed mainly on drifting invertebrates, usually by swimming upstream from a stationary position to intercept individual prey items. Laboratory experiments tested the prediction that individual salmon should reduce the distance over which they would travel (attack distance) to intercept drifting food items as the energy cost of swimming increases with increasing current velocity. Attack distance varied inversely with current velocity as expected. The fish's average speed of upstream movement relative to the substrate remained constant and the duration of individual attacks therefore declined as current velocity increased. Calculated reaction distances and a second ecperiment using tethered prey drifting at speeds independent of current velocity confirmed that these relationships were due to fish actually delaying attacks on perceived prey for longer periods as current velocity increased. Using estimated metabolic rates for burst swimming, it appears that energy expenditure per attack varies little with current velocity. Therefore, by reducing their reaction and attack distances in response to increasing current velocity, the fish reduced their energy cost of travel per attack.  相似文献   

14.
The pallid sturgeon ( Scaphirhynchus albus ) is an endangered species native to the Missouri and Mississippi rivers. To date, recovery efforts have focused on stocking juvenile fish, but little is known about ontogenetic changes in diet composition. Although diet composition for pallid sturgeon is believed to change from macroinvertebrates to fish, it is unclear at what size and/or age these ontogenetic diet shifts occur. To evaluate diet composition, 29 hatchery-stocked pallid sturgeon (range 356–720 mm fork length [FL]; mean = 549; SE = 23) were collected from the Missouri River downstream of Fort Randall Dam, South Dakota and Nebraska during summer 2006. The majority of pallid sturgeon (72%) were captured within a large delta region formed by the Niobrara River in the headwaters of Lewis and Clark Lake. Predominant prey of pallid sturgeon based on percent occurrence was Ceratopogonidae (81%), Isonychiidae (67%), Chironomidae (52%), and fishes (24%). Percent composition by wet weight showed that diets were composed of fishes (68%), Ephemeroptera (23%), Decapoda (6%), and Diptera (3%). Graphical analysis of combined data showed that mayflies, particularly Isonychiidae, were an important component of pallid sturgeon diets. Nonetheless, the percent composition of fishes in the diet increased with pallid sturgeon body size; for fish > 600 mm FL (5–7 years of age) diets were composed primarily of fish prey (66%, mostly johnny darters Etheostoma nigrum ). These findings highlight the importance of ontogenetic changes in diet composition for pallid sturgeon. Moreover, the unique habitat formed in the delta region is characterized by higher fish and invertebrate densities that may enhance foraging opportunities and thus improve recovery efforts for stocked pallid sturgeon.  相似文献   

15.
Synopsis The green sturgeon, Acipenser medirostris, is a long-lived, iteroparous, anadromous acipenserid that is native to the San Francisco Bay Estuary, California. Sub-adult and adult fish are oceanic, but enter the estuary during the spring and remain through autumn. Little is known about green sturgeon distribution within the estuary or what, if any, physical parameters influence their movements. We report the results of a telemetry study conducted between September 2001 and November 2002. Five sub-adult and one adult green sturgeon were captured by trammel net in the San Pablo Bay region of the estuary. We implanted depth-sensing, ultrasonic transmitters within the peritoneum of individuals and tracked them from a boat for 1 – 15 h per day over periods ranging from 1 to 12 days. Salinity, temperature, and dissolved oxygen profiles of the water column were measured hourly. Observed movements were categorized as either non-directional or directional. Non-directional movements, accounting for 63.4% of observations, were closely associated with the bottom, with individuals moving slowly while making frequent changes in direction and swim speed, or not moving at all. Directional movements consisted of continuous swimming in the top 20% of the water column while holding a steady course for extended periods. Four of the five sub-adult fish remained within the confines of San Pablo Bay for the duration of their tracking period. The remaining sub-adult moved over 45 km up-river into Suisun Bay before contact was lost. The adult fish exited the bay and entered the ocean 6 h after release near Tiburon, CA, a movement of approximately 10 km. The sub-adult fish typically remained at the shallower depths (<10 m) of the estuary, but there were no apparent preferences for temperature, salinity, or dissolved oxygen, with the fish moving widely and rapidly across the range of these physical parameters. Activity is believed to be independent of light level with no discernable crepuscular, nocturnal, or diurnal peaks in activity.  相似文献   

16.
Stocking is a commonly employed conservation strategy for endangered species such as the pallid sturgeon, Scaphirhynchus albus . However, decisions about when, where and at what size pallid sturgeon should be stocked are hindered because vulnerability of pallid sturgeon to fish predation is not known. The objective of this study was to evaluate the vulnerability of age-0 pallid sturgeon to predation by two Missouri River predators under different flow regimes, and in combination with alternative prey. To document vulnerability, age-0 pallid sturgeon (<100 mm) were offered to channel catfish Ictalurus punctatus and smallmouth bass Micropterus dolomieu in laboratory experiments. Selection of pallid sturgeon by both predators was measured by offering pallid sturgeon and an alternative prey, fathead minnows Pimephales promelas, in varying prey densities. Smallmouth bass consumed more age-0 pallid sturgeon (0.95 h−1) than did channel catfish (0.13 h−1), and predation rates did not differ between water velocities supporting sustained (0 m s−1) or prolonged swimming speeds (0.15 m s−1). Neither predator positively selected pallid sturgeon when alternative prey was available. Both predator species consumed more fathead minnows than pallid sturgeon across all prey density combinations. Results indicate that the vulnerability of age-0 pallid sturgeon to predation by channel catfish and smallmouth bass is low, especially in the presence of an alternative fish prey.  相似文献   

17.
Detection of rare species can be challenging and time-consuming using conventional methods, but environmental DNA (eDNA) is becoming a commonly used tool for detection in conservation and management of species. This study demonstrates the utility of the precipitation method (precipitated and preserved in 3 M sodium acetate and 95% ethanol) for collection of eDNA to detect the seasonal distribution of the critically endangered Alabama sturgeon (Scaphirhynchus suttkusi). Surface and benthic water samples were collected across a wider geographic area than previously published for Alabama sturgeon eDNA. Surface and benthic samples both yielded detections and resulted in a similar proportion of positive detections to previous work. However, by sampling a greater portion of the distribution of the Alabama sturgeon, further insight was provided on potential sturgeon movement. The results of the precipitation method show that Alabama sturgeon detections increase during spawning months, and that the fish may be overwintering in the Tombigbee River. High detections from winter benthic samples suggest that habitat choice may play a role in detectability and highlight the need to consider natural history when designing environmental DNA studies. When designing environmental DNA collection for rare species, sampling design should factor in species ecology, habitat use, site characteristics, and specific questions driving the research.  相似文献   

18.
We conducted swimming performance tests on native and nonnative fishes commonly found in Arizona streams to evaluate the extent of differences in swimming ability among species. Fishes with similar mean lengths were subjected to stepwise increases in water velocity in a laboratory swim tunnel until fish could no longer maintain position. Nonnative fathead minnows Pimephales promelas and red shiners Cyprinella lutrensis exhibited swimming abilities similar to native longfin dace Agosia chrysogaster, speckled dace Rhinichthys osculus and spikedace Meda fulgida. Nonnative mosquitofish Gambusia affinis exhibited swimming ability similar to native Gila topminnows Poeciliopsis occidentalis. Desert suckers Catostomus clarki, bluehead suckers Catostomus discobolus and speckled dace exhibited behavioral responses to high water velocities that may confer energetic advantages in swift water. Differences in swimming ability do not appear to adequately explain the disproportionate removal of nonnative fishes via flooding. Behavioral responses to high flows are more likely the mechanism that allows native fish to persist in streams during flood events.  相似文献   

19.
Concern over passage of sturgeon barriers, has focused attention on fishway design that accommodates its swimming performance. In order to evaluate swimming performance, regarding fish ladder type partial barriers, wild adult sturgeons, Acipenser transmontanus; 121–76m fork length, were captured in the San Francisco Bay Estuary and Yolo Bypass toe drain. Hydrodynamic forces and kinematic parameters for swimming performance data were collected in a laboratory flume under three flow conditions through barriers and ramp. The experiments were conducted in a 24.4 m long, 2.1 m wide, and 1.62 m deep aluminum channel. Two geometric configurations of the laboratory model were designed based on channel characteristics that have been identified in natural river systems. At a given swimming speed and fish size, the highest guidance efficiencies of successful white sturgeon passage as a function of flow depth, flow velocity, turbulence intensity, Reynolds number, Froude number and shear velocity observed in the steady flow condition, tested with the horizontal ramp structure, occurred at an approach velocity of 0.33 ms-1. The guidance efficiency of successful sturgeon passage increased both with increasing flow velocity and Froude number, and decreased both with the flow depth and the turbulence intensity. This study also provides evidence that tail beat frequency increases significantly with swimming speed, but tail beat frequency decreases with fish total length. Stride length increases both with swimming speed and fish total length. The importance of unsteady forces is expressed by the reduced frequency both with swimming speed and fish total length. Regression analysis indicates that swimming kinematic variables are explained by the swimming speed, the reduced frequency and the fish total length. The results emphasize the importance of fish ladder type patchiness when a fishway is designed for the passage of sturgeon.  相似文献   

20.
The objective of this study is to provide information on metabolic changes occurring in Chinese sturgeon (an ecologically important endangered fish) subjected to repeated cycles of fatigue and recovery and the effect on swimming capability. Fatigue-recovery cycles likely occur when fish are moving through the fishways of large dams and the results of this investigation are important for fishway design and conservation of wild Chinese sturgeon populations. A series of four stepped velocity tests were carried out successively in a Steffensen-type swimming respirometer and the effects of repeated fatigue-recovery on swimming capability and metabolism were measured. Significant results include: (1) critical swimming speed decreased from 4.34 bl/s to 2.98 bl/s; (2) active oxygen consumption (i.e. the difference between total oxygen consumption and routine oxygen consumption) decreased from 1175 mgO2/kg to 341 mgO2/kg and was the primary reason for the decrease in U crit; (3) excess post-exercise oxygen consumption decreased from 36 mgO2/kg to 22 mgO2/kg; (4) with repeated step tests, white muscle (anaerobic metabolism) began contributing to propulsion at lower swimming speeds. Therefore, Chinese sturgeon conserve energy by swimming efficiently and have high fatigue recovery capability. These results contribute to our understanding of the physiology of the Chinese sturgeon and support the conservation efforts of wild populations of this important species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号