首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long INterspersed Element one (LINE-1, or L1), is a widely distributed, autonomous retrotransposon in mammalian genomes. During retrotransposition, L1 RNA functions first as a dicistronic mRNA and then as a template for cDNA synthesis. Previously, we defined internal ribosome entry sequences (IRESs) upstream of both ORFs (ORF1 and ORF2) in the dicistronic mRNA encoded by mouse L1. Here, RNA affinity chromatography was used to isolate cellular proteins that bind these regions of L1 RNA. Four proteins, the heterogeneous nuclear ribonucleoproteins (hnRNPs) R, Q and L, and nucleolin (NCL), appeared to interact specifically with the ORF2 IRES. These were depleted from HeLa cells to examine their effects on L1 IRES-mediated translation and L1 retrotransposition. NCL knockdown specifically reduced the ORF2 IRES activity, L1 and L1-assisted Alu retrotransposition without altering L1 RNA or protein abundance. These findings are consistent with NCL acting as an IRES trans-acting factor (ITAF) for ORF2 translation and hence a positive host factor for L1 retrotransposition. In contrast, hnRNPL knockdown dramatically increased L1 retrotransposition as well as L1 RNA and ORF1 protein, indicating that this cellular protein normally interferes with retrotransposition. Thus, hnRNPL joins a small, but growing list of cellular proteins that are potent negative regulators of L1 retrotransposition.  相似文献   

2.
3.
LINE-1, or L1, is a highly successful retrotransposon in mammals, comprising 17% and 19% of the human and mouse genomes, respectively. L1 retrotransposition and hence amplification requires the protein products of its two open reading frames, ORF1 and ORF2. The sequence of the ORF1 protein (ORF1p) is not related to any protein with known function. ORF1p has RNA binding and nucleic acid chaperone activities that are both required for retrotransposition. Earlier studies have shown that ORF1p forms a homotrimer with an asymmetric dumbbell shape, in which a rod separates a large end from a small end. Here, we determine the topological arrangement of monomers within the homotrimer by comparing atomic force microscopy (AFM) images of the full ORF1p with those of truncations containing just the N or C-terminal regions. In addition, AFM images of ORF1p bound to RNA at high protein/RNA molar ratios show that ORF1p can form tightly packed clusters on RNA, with binding occurring at the C-terminal domain. The number of bound ORF1p trimers increases with increasing length of the RNA, revealing that the binding site size is about 50 nt, a value confirmed by nitrocellulose filter binding under stoichiometric conditions. These results are consistent with a role for ORF1p during L1 retrotransposition that includes both coating the RNA and acting as a nucleic acid chaperone. Furthermore, these in vitro L1 ribonucleoprotein particles provide insight into the structure of the L1 retrotransposition intermediate.  相似文献   

4.
《Molecular cell》2021,81(16):3368-3385.e9
  1. Download : Download high-res image (246KB)
  2. Download : Download full-size image
  相似文献   

5.
6.
7.
Benzenoids (C6–C1 aromatic compounds) play important roles in plant defense and are often produced upon herbivory. Black cottonwood (Populus trichocarpa) produces a variety of volatile and nonvolatile benzenoids involved in various defense responses. However, their biosynthesis in poplar is mainly unresolved. We showed feeding of the poplar leaf beetle (Chrysomela populi) on P. trichocarpa leaves led to increased emission of the benzenoid volatiles benzaldehyde, benzylalcohol, and benzyl benzoate. The accumulation of salicinoids, a group of nonvolatile phenolic defense glycosides composed in part of benzenoid units, was hardly affected by beetle herbivory. In planta labeling experiments revealed that volatile and nonvolatile poplar benzenoids are produced from cinnamic acid (C6–C3). The biosynthesis of C6–C1 aromatic compounds from cinnamic acid has been described in petunia (Petunia hybrida) flowers where the pathway includes a peroxisomal-localized chain shortening sequence, involving cinnamate-CoA ligase (CNL), cinnamoyl-CoA hydratase/dehydrogenase (CHD), and 3-ketoacyl-CoA thiolase (KAT). Sequence and phylogenetic analysis enabled the identification of small CNL, CHD, and KAT gene families in P. trichocarpa. Heterologous expression of the candidate genes in Escherichia coli and characterization of purified proteins in vitro revealed enzymatic activities similar to those described in petunia flowers. RNA interference-mediated knockdown of the CNL subfamily in gray poplar (Populus x canescens) resulted in decreased emission of C6–C1 aromatic volatiles upon herbivory, while constitutively accumulating salicinoids were not affected. This indicates the peroxisomal β-oxidative pathway participates in the formation of volatile benzenoids. The chain shortening steps for salicinoids, however, likely employ an alternative pathway.

A three-step peroxisomal β-oxidative pathway mediates the shortening of the propyl side chain of cinnamic acid and contributes to herbivore-induced aromatic volatile formation in poplar.  相似文献   

8.
N6-methyladenosine (m6A) is the most frequent chemical modification in eukaryotic mRNA and is known to participate in a variety of physiological processes, including cancer progression and viral infection. The reversible and dynamic m6A modification is installed by m6A methyltransferase (writer) enzymes and erased by m6A demethylase (eraser) enzymes. m6A modification recognized by m6A binding proteins (readers) regulates RNA processing and metabolism, leading to downstream biological effects such as promotion of stability and translation or increased degradation. The m6A writers and erasers determine the abundance of m6A modifications and play decisive roles in its distribution and function. In this review, we focused on m6A writers and erasers and present an overview on their known functions and enzymatic molecular mechanisms, showing how they recognize substrates and install or remove m6A modifications. We also summarize the current applications of m6A writers and erasers for m6A detection and highlight the merits and drawbacks of these available methods. Lastly, we describe the biological functions of m6A in cancers and viral infection based on research of m6A writers and erasers and introduce new assays for m6A functionality via programmable m6A editing tools.  相似文献   

9.
10.
11.
The RAD9–RAD1–HUS1 (9–1–1) clamp forms one half of the DNA damage checkpoint system that signals the presence of substantial regions of single-stranded DNA arising from replication fork collapse or resection of DNA double strand breaks. Loaded at the 5′-recessed end of a dsDNA–ssDNA junction by the RAD17–RFC clamp loader complex, the phosphorylated C-terminal tail of the RAD9 subunit of 9–1–1 engages with the mediator scaffold TOPBP1 which in turn activates the ATR kinase, localised through the interaction of its constitutive partner ATRIP with RPA-coated ssDNA. Using cryogenic electron microscopy (cryoEM) we have determined the structure of a complex of the human RAD17–RFC clamp loader bound to human 9–1–1, engaged with a dsDNA–ssDNA junction. The structure answers the key questions of how RAD17 confers specificity for 9–1–1 over PCNA, and how the clamp loader specifically recognises the recessed 5′ DNA end and fixes the orientation of 9–1–1 on the ssDNA.  相似文献   

12.
Coxiella burnetii is the etiological agent of the zoonotic disease Q fever, which is featured by its ability to replicate in acid vacuoles resembling the lysosomal network. One key virulence determinant of C. burnetii is the Dot/Icm system that transfers more than 150 effector proteins into host cells. These effectors function to construct the lysosome-like compartment permissive for bacterial replication, but the functions of most of these effectors remain elusive. In this study, we used an affinity tag purification mass spectrometry (AP-MS) approach to generate a C. burnetii-human protein-protein interaction (PPI) map involving 53 C. burnetii effectors and 3480 host proteins. This PPI map revealed that the C. burnetii effector CBU0425 (designated CirB) interacts with most subunits of the 20S core proteasome. We found that ectopically expressed CirB inhibits hydrolytic activity of the proteasome. In addition, overexpression of CirB in C. burnetii caused dramatic inhibition of proteasome activity in host cells, while knocking down CirB expression alleviated such inhibitory effects. Moreover, we showed that a region of CirB that spans residues 91–120 binds to the proteasome subunit PSMB5 (beta 5). Finally, PSMB5 knockdown promotes C. burnetii virulence, highlighting the importance of proteasome activity modulation during the course of C. burnetii infection.  相似文献   

13.
14.
Lung adenocarcinoma (LUAD) remains a leading cause of cancer-related deaths worldwide. YTHDF2 is a reader of N6-methyladenosine (m6A) on RNA and plays a critical role in the initiation and propagation of myeloid leukemia; however, whether YTHDF2 controls the development of LUAD remains to be explored. Here, we found that YTHDF2 was significantly upregulated in LUAD compared with paracancerous normal tissues, and YTHDF2 knockdown drastically inhibited, while its overexpression promoted, cell growth, colony formation and migration of LUAD cells in vitro. In addition, YTHDF2 knockdown significantly inhibited tumorigenesis in a murine tumor xenograft model. Through the integrative analysis of RNA-seq, m6A-seq, CLIP-seq, and RIP-seq datasets, we identified a set of potential direct targets of YTHDF2 in LUAD, among which we confirmed AXIN1, which encodes a negative regulator of the Wnt/β-catenin signaling, as a direct target of YTHDF2. YTHDF2 promoted AXIN1 mRNA decay and subsequently activated the Wnt/β-catenin signaling. Knockout of AXIN1 sufficiently rescued the inhibitory effect of YTHDF2 depletion on lung cancer cell proliferation, colony-formation, and migration. These results revealed YTHDF2 to be a contributor of LUAD development acting through the upregulation of the AXIN1/Wnt/β-catenin signaling, which can be a potential therapeutic target for LUAD.Subject terms: DNA methylation, Non-small-cell lung cancer  相似文献   

15.
BackgroundN6-methyladenosine (m6A) modification plays key roles in tumor progression. LncRNA deoxyguanosine kinase antisense RNA 1 (DGUOK-AS1) has been reported as a promoter in tumors, but its role and mechanism in non-small cell lung cancer (NSCLC) development remain uncertain.MethodsCell proliferation, migration, invasion and angiogenesis were investigated via CCK-8, colony formation, transwell, and tube formation assays, respectively. The location of DGUOK-AS1 was detected via FISH assay. The interaction relationship among DGUOK-AS1, IGF2BP2 and TRPM7 was confirmed by RIP and MeRIP assays. The effects of DGUOK-AS1 on NSCLC growth and metastasis in vivo were investigated using xenograft and pulmonary metastatic models.ResultsDGUOK-AS1 was upregulated in NSCLC. DGUOK-AS1 silencing inhibited NSCLC cell proliferation, migration, invasion and angiogenesis. DGUOK-AS1 was mostly expressed in cytoplasm, and positively regulated IGF2BP2. METTL3/IGF2BP2 axis could increase TRPM7 mRNA stability in m6A-dependent manner. TRPM7 overexpression reversed the inhibitive function of DGUOK-AS1 silencing on NSCLC development. DGUOK-AS1 knockdown suppressed NSCLC cell growth and metastasis in nude mice.ConclusionDGUOK-AS1 silencing restrains NSCLC cell growth and metastasis through decreasing TRPM7 stability via regulation of the METTL3/IGF2BP2-mediated m6A modification.  相似文献   

16.
17.
Acute heat stress (aHS) can induce strong developmental defects in Caenorhabditis elegans larva but not lethality or sterility. This stress results in transitory fragmentation of mitochondria, formation of aggregates in the matrix, and decrease of mitochondrial respiration. Moreover, active autophagic flux associated with mitophagy events enables the rebuilding of the mitochondrial network and developmental recovery, showing that the autophagic response is protective. This adaptation to aHS does not require Pink1/Parkin or the mitophagy receptors DCT-1/NIX and FUNDC1. We also find that mitochondria are a major site for autophagosome biogenesis in the epidermis in both standard and heat stress conditions. In addition, we report that the depletion of the dynamin-related protein 1 (DRP-1) affects autophagic processes and the adaptation to aHS. In drp-1 animals, the abnormal mitochondria tend to modify their shape upon aHS but are unable to achieve fragmentation. Autophagy is induced, but autophagosomes are abnormally elongated and clustered on mitochondria. Our data support a role for DRP-1 in coordinating mitochondrial fission and autophagosome biogenesis in stress conditions.  相似文献   

18.
19.
S W Ding  W X Li    R H Symons 《The EMBO journal》1995,14(23):5762-5772
We recently identified a new cucumovirus-specific gene (2b) which is encoded by RNA 2 of the cucumber mosaic cucumovirus (CMV) tripartite RNA genome and whose coding sequence overlaps the C-terminal 69 codons of ORF 2a encoding the RNA polymerase protein. We have now found that although a CMV mutant lacking ORF 2b accumulated in the inoculated cotyledons of cucumber plants, it was unable to spread systemically, demonstrating involvement of 2b in long distance movement. The same mutant infected tobacco systemically with a much reduced virulence and delayed appearance of symptoms, indicating that 2b may contribute to long distance movement in this host. Deletion of the overlapping C-terminal part of ORF 2a did not change infectivity of the mutant in either host species, ruling out 2a mutation as the reason for the change of phenotype. Further infectivity studies with mutants containing partial deletions in ORF 2b further supported the conclusion that 2b encodes a host-specific long distance movement function. Sequence analysis revealed that 2b may represent a novel naturally occurring hybrid gene important to the evolutionary formation of the cucumovirus group and that it could provide a genetic basis for the wide host range of these viruses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号