首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
急性盐度胁迫对军曹鱼稚鱼渗透压调节的影响   总被引:11,自引:0,他引:11  
研究了环境盐度急性胁迫对军曹鱼(Rachycentron canadum)稚鱼鳃Na+-K+ATPase(NKA)活性及血清渗透压、Na+、K+和Cl-离子调节的影响.结果表明:将稚鱼从盐度37中直接转移至盐度0、5、15、25、37(对照)和45的水体中,12 h后仅盐度0处理出现死亡(死亡率100%).各处理鳃NKA活性和血清渗透压在最初3 h内出现一定波动,随后变化平稳.试验结束时(12 h), NKA活性与盐度梯度呈“U”型分布,盐度5处理酶活性显著高于其它处理(P<0.05),盐度15处理活性最低,而各处理的血清渗透压大小(293~399 mOsmol·kg-1)与盐度呈正相关;在3~12 h内稚鱼血清Na+和Cl-浓度随盐度升高而升高,但增幅较小,血清K+浓度则与盐度呈负相关;12 h稚鱼的等渗点为328.2 mOsm·kg-1,相当于盐度11.48,而Na+、K+和Cl-等离子点分别为155.2、6.16和137.1 mmol·L-1,分别相当于盐度10.68、20.44及8.41.军曹鱼在生理上具有广盐性鱼类的“低渗环境高NKA活性”特征,有较强及迅速的渗透压和离子调节与平衡能力.  相似文献   

2.
This study was carried out to determine the effects of gradual salinity increase on osmoregulatory ability of the Caspian roach Rutilus caspicus, under conditions which mimic stocking conditions of hatchery-raised fish. Initially, 30 juvenile fish (mean ± S.D. 3.20 ± 0.34 g) were transferred to 20 l circular tanks, in which salinities were changed in a stepwise fashion, from 0 to 5, 10 or 15 at 48 h intervals. The fish at salinity 15 were held for an additional 48 h at this salinity. Forty-eight hours after salinity transfer, survival rate, haematocrit, plasma Cl(-) , Na(+) and K(+) concentrations, osmolality and gill Na(+) /K(+) -ATPase (NKA) activity were measured. The only effect of exposure to 5 was a significant reduction in haematocrit compared to the freshwater control group. Exposure to salinity 10 raised haematocrit, Cl(-) and Na(+) concentrations and osmolality. At 48 h exposure to salinity 15, haematocrit, Cl(-) and Na(+) concentrations and osmolality were significantly higher than freshwater controls, and gill NKA activity was significantly lower, but the effect on NKA was no longer evident at 96 h exposure. There were no effects on survival. These results indicate that R. caspicus juveniles experience an initial non-lethal iono-osmotic perturbation following salinity increase but can adapt to brackish water at salinity 15.  相似文献   

3.
The branchial osmoregulatory response of gilthead sea bream (Sparus auratus L.) to short-term (2-192 hr) and long-term (2 weeks) exposure to different environmental salinities (5 per thousand, 15 per thousand, 25 per thousand, 38 per thousand and 60 per thousand) was investigated. A "U-shaped" relationship was observed between environmental salinity and gill Na+,K+ -ATPase activity in both long- and short-term exposure to altered salinity, with the increase in activity occurring between 24 and 96 hr after the onset of exposure. Plasma osmolality and plasma ions (sodium, chloride, calcium and potassium) showed a tendency to increase in parallel with salinity. These variables only differed significantly (P<0.05) in fish adapted to 60 per thousand salinity with respect to fish adapted to full-strength sea-water (SW). Plasma glucose remained unchanged whereas plasma lactate was elevated at 5 per thousand and 60 per thousand. Muscle water content (MWC) was significantly lower in fish adapted to 60 per thousand. Chloride cells (CC) were only present on the surface of the gill filaments and absent from the secondary lamellae. CC distribution was not altered by external salinity. However, the number and size of CC were significantly increased at salinity extremes (5 per thousand and 60 per thousand), whereas fish exposed to intermediate salinities (15 per thousand and 25 per thousand) had fewer and smaller cells. Furthermore, the CC of fish exposed to diluted SW became rounder whereas they were more elongated in fish in full-strength and hypersaline SW. This is consistent with previous reports indicating the existence of two CC types in euryhaline fish. At likely environmental salinities, gilthead sea bream show minor changes in plasma variables and the effective regulation of gill Na+,K+ -ATPase. However, at very low salinities both haemodilution and up-regulation of gill Na+,K+ -ATPase predict a poor adaptation most likely related to deficiency or absence of specific components of the CC important for ion xuptake.  相似文献   

4.
The Pacific white shrimp, Litopenaeus vannamei, acclimated to 30 ppt salinity, was transferred to either low (15 and 5 ppt), or high (45 ppt) salinity for 7 days. Hemolymph osmolality, branchial carbonic anhydrase activity, and total ninhydrin-positive substances (TNPS) in abdominal muscle were then measured for each condition. Hemolymph osmotic concentration was regulated slightly below ambient water osmolality in shrimp acclimated to 30 ppt. At 15 and 5 ppt, shrimp were strong hyper-osmotic regulators, maintaining hemolymph osmolality between 200 and 400 mOsm above ambient. Shrimp acclimated to 30 ppt and transferred to 45 ppt salinity were strong hypo-osmotic and hypo-ionic regulators, maintaining hemolymph osmolality over 400 mOsm below ambient. Branchial carbonic anhydrase (CA) activity was low (approximately 100 micromol CO(2) mg protein(-1) min(-1)) and uniform across all 8 gills in shrimp acclimated to 30 ppt, but CA activity increased in all gills after exposure to both low and high salinities. Anterior gills had the largest increases in CA activity, and levels of increase were approximately the same for low and high salinity exposure. Branchial CA induction appears to be functionally important in both hyper- and hypo-osmotic regulations of hemolymph osmotic concentrations. Abdominal muscle TNPS made up between 19 and 38% of the total intracellular osmotic concentration in shrimp acclimated to 5, 15, and 30 ppt. TNPS levels did not change across this salinity range, over which hemolymph osmotic concentrations were tightly regulated. At 45 ppt, hemolymph osmolality increased, and muscle TNPS also increased, presumably to counteract intracellular water loss and restore cell volume. L. vannamei appears to employ mechanisms of both extracellular osmoregulation and intracellular volume regulation as the basis of its euryhalinity.  相似文献   

5.
In this study we assessed changes in the osmoregulatory system of juvenile sub-Antarctic Eleginops maclovinus submitted to different environmental salinities (5, 15, 32 and 45 psu) using two different acclimation trials: (1) an end-point experiment (exposure for 14 days) and (2) a time course experiment (specimens were sampled on days 1, 3, 7 and 14 post-transfer). Plasma osmolality, cortisol and metabolites (glucose, lactate and protein) values as well as Na+, K+-ATPase (NKA) activity were assessed in several osmoregulatory tissues (gills, kidney and intestine). In both trials, acclimation to different environmental salinities for 14 days induced changes in plasma metabolites (glucose, lactate and proteins) as well as cortisol values related to salinity challenges. Plasma osmolality and gill NKA activity presented a direct and positive relationship with respect to environmental salinity, while kidney NKA activity showed a “U-shaped” relationship. Anterior intestinal NKA activity increased in response to environmental salinity and apparently did not change in the middle portion of this organ, while it was enhanced in the posterior portion in environmental salinities different than seawater. Plasma metabolite values increased under hypo- and hypersaline conditions, indicating the importance of these energy substrates in extreme environments. The time course study revealed that specimens of E. maclovinus are able to accommodate their osmotic and metabolic system to respond to osmoregulatory challenges by allostatic changes.  相似文献   

6.
Estuaries of tropical developing countries suffering from severe droughts induced by climate change are habitats to fish, which face drastic salinity variations and the contact with pollutants. The Western Africa tilapia Sarotherodon melanotheron is highly resistant to hypersalinity, but the effect of human-released xenobiotics on its adaptation is barely known. Controlled experiments were conducted to observe S. melanotheron gill adaptation to abrupt salinity variations in the presence of waterborne DDT, at concentrations detected in their natural habitat. The gills appeared as an important site of DDT conversion to DDD and/or depuration. A 12-days DDT exposure resulted in decreased gill epithelium thickness at all salinities (from fresh- to hypersaline-water), and the structure of gills from freshwater fish was particularly altered, relative to controls. No unbalance in tilapia blood osmolality was observed following DDT exposure, which however caused a decrease in branchial Na(+)-K(+)-ATPase (NKA) activity. Gill cellular NKA expression was reduced in salt-water, together with the expression of the CFTR chloride channel in hypersaline water. Although S. melanotheron seems very resistant (especially in seawater) to short-term waterborne DDT contamination, the resulting alterations of the gill tissue, cells and enzymes might affect longer term respiration, toxicant depuration and/or osmoregulation in highly fluctuating salinities.  相似文献   

7.
The osmoregulatory response of the blue crab Callinectes rathbunae parasitized with the rhizocephalan barnacle Loxothylacus texanus, and subjected to sudden salinity changes, was experimentally measured in the laboratory. Parasitized and control crabs were exposed to salinity changes every 3 h and their hemolymph osmolality measured. Two experiments, one with increasing salinity conditions (5‰, 12‰, 19‰, 25‰) and a second one with decreasing salinities (35‰, 25‰, 15‰, 5‰) were conducted. The results show that L. texanus significantly alters the hemolymph osmolality of C. rathbunae maintaining it at lower than normal levels. In the increasing salinity trial, the hypoosmotic hemolymph condition of parasitized crabs was present at all salinities tested, whereas in the decreasing salinity trial a significant effect was found only at salinities of 5‰ and 15‰. Since C. rathbunae is constantly subjected to abrupt salinity changes in the tropical estuaries where it occurs, moving into high salinity areas may be the only way to cope with the impact of L. texanus.  相似文献   

8.
The milkfish (Chanos chanos) is an economic species in Southeast Asia. In Taiwan, the milkfish are commercially cultured in environments of various salinities. Na+/K+-ATPase (NKA) is a key enzyme for fish iono- and osmoregulation. When compared with gills, NKA and its potential role were less examined by different approaches in the other osmoregulatory organs (e.g., kidney) of euryhaline teleosts. The objective of this study was to investigate the correlation between osmoregulatory plasticity and renal NKA in this euryhaline species. Muscle water contents (MWC), plasma, and urine osmolality, kidney histology, as well as distribution, expression (mRNA and protein), and specific activity of renal NKA were examined in juvenile milkfish acclimated to fresh water (FW), seawater (SW 35‰), and hypersaline water (HSW 60‰) for at least two weeks before experiments. MWC showed no significant difference among all groups. Plasma osmolality was maintained within the range of physiological homeostasis in milkfish acclimated to different salinities, while, urine osmolality of FW-acclimated fish was evidently lower than SW- and HSW-acclimated individuals. The renal tubules were identified by staining with periodic acid Schiff’s reagent and hematoxylin. Moreover, immunohistochemical staining showed that NKA was distributed in the epithelial cells of proximal tubules, distal tubules, and collecting tubules, but not in glomeruli, of milkfish exposed to different ambient salinities. The highest abundance of relative NKA α subunit mRNA was found in FW-acclimated milkfish rather than SW- and HSW-acclimated individuals. Furthermore, relative protein amounts of renal NKA α and β subunits as well as NKA-specific activity were also found to be higher in the FW group than SW and the HSW groups. This study integrated diverse levels (i.e., histological distribution, gene, protein, and specific activity) of renal NKA expression and illustrated the potential role of NKA in triggering ion reabsorption in kidneys of the marine euryhaline milkfish when acclimated to a hypotonic FW environment.  相似文献   

9.
The pufferfishes Sphoeroides testudineus and Sphoeroides greeleyi are estuarine species that osmoregulate efficiently, but S. testudineus tolerates seawater dilution to a much higher degree than S. greeleyi. This study aimed at testing whether NKCC is involved with their differential tolerance of seawater dilution, through the analysis of in vivo furosemide (NKCC inhibitor) injection both on hypo-regulation (in 35 per thousand salinity) and hyper-regulation (in 5 per thousand salinity). After exposure for 6 h or 5 days to both salinities, blood samples were obtained for determination of plasma osmolality, chloride, sodium and hematocrit, and muscle samples for determination of water content. Furosemide injection led to increased plasma osmolality and sodium in 35 per thousand and decreased osmolality and chloride in 5 per thousand, when compared to saline-injected controls. Furosemide injection led to hematocrit reduction in both salinities, and muscle water content increase in 5 per thousand and decrease in 35 per thousand in S. testudineus. The results are compatible with NKCC working in branchial NaCl secretion in 35 per thousand, in both species, and a higher role in cell volume regulation in blood and muscle cells of S. testudineus, in both salinities, which could partially explain the stronger capacity of S. testudineus to tolerate seawater dilution during low tide.  相似文献   

10.
The Mozambique tilapia (Oreochromis mossambicus) is prone to osmoregulatory disturbances when faced with fluctuating ambient temperatures. To investigate the underlying causes of this phenomenon, freshwater (FW)- and seawater (SW)-acclimated tilapia were transferred to 15, 25, or 35°C for 2 weeks, and along with typically used indicators of osmoregulatory status [plasma osmolality and branchial and intestinal specific Na+, K+-ATPase (NKA) activity], we used tissue microarrays (TMA) and laser-scanning cytometry (LSC) to characterize the effects of temperature acclimation. Tissue microarrays were stained with fluorescently labeled anti-Na+, K+-ATPase antibodies that allowed for the quantification of NKA abundance per unit area within individual branchial mitochondria-rich cells (MRCs) as well as sections of renal tissue. Mitochondria-rich cell counts and estimates of size were carried out for each treatment by the detection of DASPMI fluorescence. The combined analyses showed that SW fish have larger but fewer MRCs that contain more NKA per unit area. After a 2-week acclimation to 15°C tilapia experienced osmotic imbalances in both FW and SW that were likely due to low NKA activity. SW-acclimated fish compensated for the low activity by increasing MRC size and subsequently the concentration of NKA within MRCs. Although there were no signs of osmotic stress in FW-acclimated tilapia at 25°C, there was an increased NKA capacity that was most likely mediated by a higher MRC count. We conclude on the basis of the different responses to temperature acclimation that salinity-induced changes in the NKA concentration of MRCs alter thermal tolerance limits of tilapia.  相似文献   

11.
Fatty acid composition of cellular membranes can modify permeability and can modulate the activity of Na(+)/K(+)-ATPase. Although highly unsaturated fatty acids (HUFA) improve survival and osmoregulatory capacity to low salinities in penaeid shrimp, the possible mechanisms have not been established. For this purpose the influence of HUFA supplementation in diet (2.9 vs. 34% HUFA proportion to total fatty acids) on osmoregulatory responses of juvenile Litopenaeus vannamei submitted to an acute (15 h) or chronic exposure (21 days), to low (5 g L(-1)) and high salinities (50 g L(-1)) was analyzed. Shrimp fed the high-HUFA diet, had higher concentration of main HUFA (20:5n-3 and 22:6n-3) in polar lipids of gills. Osmotic pressure in hemolymph was significantly affected by salinity in acute (640, 751, 847 mOsm/kg for 5, 30 and 50 g L(-1), respectively), and chronic exposure (645, 713, 814 mOsm/kg), but variations between them were small compared to environmental salinity (206, 832, 1547 mOsm/kg), indicating that osmoregulation was achieved in a matter of hours. An increase in Na(+)/K(+)-ATPase activity was observed only after a chronic exposure to low salinity. Free amino acids (FAA), mainly alanine and arginine, were higher at 30 (control) and 50 g L(-1) in accordance to their role as organic osmolites. Neither osmotic pressure, Na(+)/K(+)-ATPase activity, nor FAA was affected by HUFA supplementation. However, higher water content in gills of shrimp exposed to low salinities was counteracted by increased HUFA content, which could be a result of changes in water permeability of gills. The osmoregulatory capacity of penaeid shrimp to low and high salinities was achieved within 15 h of acclimation and did not depend on HUFA supplementation in the diet.  相似文献   

12.
Juvenile milkfish Chanos chanos (Forssk?l, 1775) were transferred from a local fish farm to fresh water (FW; 0 per thousand ), brackish water (BW; 10 per thousand, 20 per thousand ) and seawater (SW; 35 per thousand ) conditions in the laboratory and reared for at least two weeks. The blood and gill of the fish adapted to various salinities were analyzed to determine the osmoregulatory ability of this euryhaline species. No significant difference was found in plasma osmolality, sodium or chloride concentrations of milkfish adapted to various salinities. In FW, the fish exhibited the highest specific activity of Na, K-ATPase (NKA) in gills, while the SW group was found to have the lowest. Relative abundance of branchial NKA alpha-subunit revealed similar profiles. However, in contrary to other euryhaline teleosts, i.e. tilapia, salmon and eel, the naturally SW-dwelling milkfish expresses higher activity of NKA in BW and FW. Immunocytochemical staining has shown that most Na, K-ATPase immunoreactive (NKIR) cells in fish adapted to BW and SW were localized to the filaments with very few on the lamellae. Moreover, in FW-adapted milkfish, the number of NKIR cells found on the lamellae increased significantly. Such responses as elevated NKIR cell number and NKA activity are thought to improve the osmoregulatory capacity of the milkfish in hyposaline environments.  相似文献   

13.
The effects of temperature on the salinity tolerance of Mozambique-Wami tilapia hybrids (Oreochromis mossambicus x O. urolepis hornorum) were investigated by transferring 35 g/l, 25 degrees C-acclimated fish to 35, 43, 51 or 60 g/l salinity at 15, 25 or 35 degrees C for 24 h, and by assaying gill tissue for branchial Na(+), K(+)-ATPase activity at the three temperatures after acclimating the fish to 15, 25 or 35 degrees C for 2 weeks. Tilapia survived all salinities at 25 and 35 degrees C; however, at 15 degrees C, mortality was 85.7% and 100% in the 51 g/l and 60 g/l groups, respectively. There was a significant interaction between temperature and salinity, as plasma osmolality, [Na(+)] and [Cl(-)] were significantly increased at 51 and 60 g/l salinity in 35 degrees C water (P<0.001). Additionally, muscle water content was significantly reduced at 43 g/l, 15 degrees C relative to pre-transfer values (P<0.001). Branchial Na(+), K(+)-ATPase activity was reduced at 15 degrees C regardless of acclimation temperature, and 25 degrees C-acclimated gill tissue did not show an increase in activity when assayed at 35 degrees C. Results indicate that the effects of a combined temperature-salinity transfer on plasma osmolality and ion concentrations, as well as muscle water content, are greater than when either challenge is given alone. Additionally, branchial Na(+), K(+)-ATPase activity is altered when assayed at varying temperatures; in the case of 15 degrees C, regardless of acclimation temperature. Our enzyme activity data may indicate the presence of a high temperature isoform of branchial Na(+), K(+)-ATPase enzyme.  相似文献   

14.
Freshwater (FW) spotted green pufferfish (Tetraodon nigroviridis) were transferred directly from a local aquarium to fresh water (FW; 0 per thousand ), brackish water (BW; 15 per thousand ), and seawater (SW; 35 per thousand ) conditions in the laboratory and reared for at least two weeks. No mortality was found. To investigate the efficient mechanisms of osmoregulation in the euryhaline teleost, distribution and expression of Na,K-ATPase (NKA) in gill and kidney of the pufferfish were examined and the osmolality, [Na+] and [Cl-] of the blood were assayed. The lowest levels of both relative protein abundance and activity were found to be exhibited in the BW group, and higher levels in the SW group than FW group. In all salinities, branchial NKA immunoreactivity was found in epithelial cells of the interlamellar region of the filament and not on the lamellae. Relative abundance of kidney NKA alpha-subunit, as well as the NKA activity, was found to be higher in the FW pufferfish than fish in BW or SW. Renal NKA appeared in the epithelial cells of distal tubules, proximal tubules, and collecting tubules, but not in glomeruli, in fish groups of various salinities. Plasma osmolality and chloride levels were significantly lower in FW pufferfish than those in BW and SW, whereas plasma sodium did not differ among the groups. Although identical distributions of NKA were found in either gill or kidney of FW-, BW- or SW-acclimated spotted green pufferfish, differential NKA expression in fish of various salinity groups was associated with physiological homeostasis (stable blood osmolality), and illustrated the impressive osmoregulatory ability of this freshwater and estuarine species in response to salinity challenge.  相似文献   

15.
Adult fish of a freshwater population of the Iberian endangered cyprinodontid Aphanius iberus, were induced to reproduce at salinities of 5, 15, 30, 45 and 60ppt. For each salinity five 30l aquaria were used, each one including a male and two females. Maturity and spawning outside the natural season, were obtained at conditions of 22 to 28°C and a photoperiod of 14L:10D. The larvae were fed with rotifers Brachionus plicatilis and Synchaeta cecilia valentina. Experiment lasted 40 days. The first spawning occurred on the 17th day at 45ppt of salinity and the first embryos hatched on the 34th day at 5 and 15ppt salinity. The final average number of larvae per aquarium ranged from 5.2 (45ppt salinity) to 10.8 (15ppt salinity). No significant differences were found between the average values at different salinities (p<0.01).  相似文献   

16.
Survival, haemolymph osmolality and the specific metabolic rate of the isopod Idotea chelipes from the brackish waters of the southern Baltic Sea (salinity 7 psu) were investigated after acclimation to different salinities in the range of 3-30 psu keeping other parameters constant (T=15 degrees C, full air saturation). Haemolymph osmolality of I. chelipes increased from 379+/-33 mmol kg(-1) at 3 psu to 935+/-12 mmol kg(-1) at 30 psu. In the salinity range of 3-11 psu I. chelipes exhibited a hyperosmotic pattern of haemolymph regulation, whereas from 14 to 25 it behaved like an osmoconformer. Isoosmosis occurred at 28.5 psu (920 mmol kg(-1)). The specific metabolic rate of I. chelipes was significantly (P<0.05) related to salinity, with maximum (2.4+/-0.8 J g(-1) wm h(-1)) and minimum values (0.6+/-0.3 J g(-1) wm h(-1)) at 7 and 20 psu, respectively. The changes in the specific metabolic rate and in the difference between the osmolality of haemolymph and external medium were significantly correlated for I. chelipes (P<0.05). Rates of change per salinity unit were, however, unequal varying according to salinity transition. These differences indicate that osmotic adjustment may be a more or less costly in terms of energy according to salinity.  相似文献   

17.
The study tests the physiological responses of Persian sturgeon, Acipenser persicus, during the abrupt release of juveniles from freshwater (FW) into brackish waters (BW = 11‰) of the Caspian Sea. Fish weight at release was 2‐3 g (2.55 ± 0.41 g; 8.8 ± 0.58 cm TL). Totals of 160 individuals were randomly distributed into four fiber‐glass aerated tanks (volume 60‐L). Two tanks served as controls (FW groups), and two as exposure tanks for BW (Caspian Sea water = CSW). Fish were sampled at 0, 3, 6, 12, 24, 48 and 96 hr after abrupt transfer to CSW. Plasma osmolality, immunolocalization of Na+, K+ ‐ATPase (NKA) and Na+/K+/2Cl (NKCC) Co‐transporter, NKA activity and the NKA α‐subunit mRNA expression were analyzed. Blood osmolality of fish transferred from FW to CSW increased significantly within hours post‐transfer (p < .05) and remained at a high level for up to 96 hr. Immunolocalization of NKCC indicated co‐localization with NKA in the chloride cells in the gill epithelium. A partial sequence of the NKA α‐subunit (632 bp) is described. Its expression levels were up‐regulated at 12 and 48 hr following salinity transfer (p < .05). However, NKA activity sharply increased in CSW specimens by almost 2.8‐fold (p < .05) between 48 and 96 hr after transfer. Gill NKCC co‐transporter abundance increased, coinciding with increased gill NKA activity. The increased activity of NKCC during salt excretion in CSW may lead to an influx of Na+ into the chloride cells. Consequently, NKA activity increases to maintain intracellular Na+ homeostasis.  相似文献   

18.
The present study determined the blood plasma osmolality and oxygen consumption of the perch Perca fluviatilis at different salinities (0, 10 and 15) and temperatures (5, 10 and 20° C). Blood plasma osmolality increased with salinity at all temperatures. Standard metabolic rate (SMR) increased with salinity at 10 and 20° C. Maximum metabolic rate (MMR) and aerobic scope was lowest at salinity of 15 at 5° C, yet at 20° C, they were lowest at a salinity of 0. A cost of osmoregulation (SMR at a salinity of 0 and 15 compared with SMR at a salinity of 10) could only be detected at a salinity of 15 at 20° C, where it was 28%. The results show that P. fluviatilis have capacity to osmoregulate in hyper‐osmotic environments. This contradicts previous studies and indicates intraspecific variability in osmoregulatory capabilities among P. fluviatilis populations or habitat origins. An apparent cost of osmoregulation (28%) at a salinity of 15 at 20° C indicates that the cost of osmoregulation in P. fluviatilis increases with temperature under hyperosmotic conditions and a power analysis showed that the cost of osmoregulation could be lower than 12·5% under other environmental conditions. The effect of salinity on MMR is possibly due to a reduction in gill permeability, initiated to reduce osmotic stress. An interaction between salinity and temperature on aerobic scope shows that high salinity habitats are energetically beneficial during warm periods (summer), whereas low salinity habitats are energetically beneficial during cold periods (winter). It is suggested, therefore, that the seasonal migrations of P. fluviatilis between brackish and fresh water is to select an environment that is optimal for metabolism and aerobic scope.  相似文献   

19.
The present study reports the influence of salinity (5, 15, 25 and 35 g/L) on the biochemical and immune characteristics of Fenneropenaeus indicus challenged with 5. 5 × 104 copy number of white spot syndrome virus (WSSV). F. indicus that had been reared in 25 g/L, injected with WSSV and transferred to 5, 15, 25 (control) and 35 g/L were examined after 0–120 hrs for total hemocyte count (THC), phenoloxidase (PO) and respiratory burst (RB) activity and alkaline and acid phosphatase activities. It was concluded that F. indicus that had been transferred from 25 g/L to lower and higher salinity levels (5, 15 and 35 g/L) had poorer immune indices and decreased resistance against WSSV infection. After 120 hrs, the mortality rate in WSSV‐injected F. indicus experimental groups (5 and 35 g/L) was significantly higher than for F. indicus exposed to 25 and 15 g/L salinities. During the experimental period (0–120 hrs), biochemical variables, namely total protein, carbohydrate, and lipid concentrations, were measured in hemolymph of both experimental and control groups. Acute salinity changes induced an increase in protein variations across the tested salinity ranges in shrimp. After 24 hrs, THC and PO activity decreased significantly whereas RB, alkaline phosphatase and acid phosphatase activities increased in shrimps kept at the lower salinities of 5, 15 and 35 g/L.  相似文献   

20.
Euryhaline tilapia (Oreochromis mossambicus) survived in brackish water (BW; 20‰) but died in seawater (SW; 35‰) within 6 h when transferred directly from fresh water (FW). The purpose of this study was to clarify responses in gills of FW tilapia to various hyperosmotic shocks induced by BW or SW. In FW-acclimated tilapia, scanning electron micrographs of gills revealed three subtypes of MR cell apical surfaces: wavy-convex (subtype I), shallow-basin (subtype II), and deep-hole (subtype III). Density of apical surfaces of mitochondrion-rich (MR) cell in gills of the BW-transfer tilapia decreased significantly within 3 h post-transfer due to disappearance of subtype I cells, but increased from 48 h post-transfer because of increasing density of subtype III cells. SW-transfer individuals, however, showed decreased density of MR cell openings after 1 h post-transfer because subtype I MR cell disappeared. On the other hand, relative branchial Na+/K+-ATPase (NKA) α1-subunit mRNA levels, protein abundance, and NKA activity of the BW-transfer group increased significantly at 6, 12, and 12 h post-transfer, respectively. In the SW-transfer group, relative mRNA and protein abundance of gill NKA α1-subunit did not change while NKA activity declined before dying in 5 h. Upon SW transfer, dramatic increases (nearly 2-fold) of plasma osmolality, [Na+], and [Cl] were found prior to death. For the BW-transfer group, plasma osmolality was eventually controlled by 96 h post-transfer by enhancement of NKA expression and subtype III MR cell. The success or failure of NKA activation from gene to functional protein as well as the development of specific SW subtype in gills were crucial for the survival of euryhaline tilapia to various hyperosmotic shocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号