首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Robo4 is a vascular-specific receptor that inhibits endothelial migration   总被引:20,自引:0,他引:20  
Guidance and patterning of axons are orchestrated by cell-surface receptors and ligands that provide directional cues. Interactions between the Robo receptor and Slit ligand families of proteins initiate signaling cascades that repel axonal outgrowth. Although the vascular and nervous systems grow as parallel networks, the mechanisms by which the vascular endothelial cells are guided to their appropriate positions remain obscure. We have identified a putative Robo homologue, Robo4, based on its differential expression in mutant mice with defects in vascular sprouting. In contrast to known neuronal Robo family members, the arrangement of the extracellular domains of Robo4 diverges significantly from that of all other Robo family members. Moreover, Robo4 is specifically expressed in the vascular endothelium during murine embryonic development. We show that Robo4 binds Slit and inhibits cellular migration in a heterologous expression system, analogous to the role of known Robo receptors in the nervous system. Immunoprecipitation studies indicate that Robo4 binds to Mena, a known effector of Robo-Slit signaling. Finally, we show that Robo4 is the only Robo family member expressed in primary endothelial cells and that application of Slit inhibits their migration. These data demonstrate that Robo4 is a bona fide member of the Robo family and may provide a repulsive cue to migrating endothelial cells during vascular development.  相似文献   

2.
Robo4 signaling in endothelial cells implies attraction guidance mechanisms   总被引:2,自引:0,他引:2  
Roundabouts (robo) are cell-surface receptors that mediate repulsive signaling mechanisms at the central nervous system midline. However, robos may also mediate attraction mechanisms in the context of vascular development. Here, we have performed structure-function analysis of roundabout4 (Robo4), the predominant robo expressed in embryonic zebrafish vasculature and found by gain of function approaches in vitro that Robo4 activates Cdc42 and Rac1 Rho GTPases in endothelial cells. Indeed, complementary robo4 gene knockdown approaches in zebrafish embryos show lower amounts of active Cdc42 and Rac1 and angioblasts isolated from these knockdown embryos search actively for directionality and guidance cues. Furthermore, Robo4-expressing endothelial cells show morphology and phenotype, characteristic of Rho GTPase activation. Taken together, this study suggests that Robo4 mediates attraction-signaling mechanisms through Rho GTPases in vertebrate vascular guidance.  相似文献   

3.
Since neural epidermal growth factor-like-like (NELL) 2 was identified as a novel ligand for the roundabout (Robo) 3 receptor, research on NELL–Robo signaling has become increasingly important. We have previously reported that Robo2 can bind to NELL1/2 in acidic conditions but not at neutral pH. The NELL1/2-binding site that is occluded in neutral conditions is thought to be exposed by a conformational change of the Robo2 ectodomain upon exposure to acidic pH; however, the underlying structural mechanisms are not well understood. Here, we investigated the interaction between the immunoglobulin-like domains and fibronectin type III domains that form hairpin-like structure of the Robo2 ectodomain, and demonstrated that acidic pH attenuates the interaction between them. Alternative splicing isoforms of Robo2, which affect the conformation of the hairpin-like structure, were found to have distinct NELL1/2-binding affinities. We developed Förster resonance energy transfer-based indicators for monitoring conformational change of the Robo2 ectodomain by individually inserting donor and acceptor fluorescent proteins at its ends. These experiments revealed that the ends of the Robo2 ectodomain are close to each other in acidic conditions. By combining these findings with the results of size exclusion chromatography analysis, we suggest that, in acidic conditions, the Robo2 ectodomain has a compact conformation with a loose hairpin-like structure. These results may help elucidate the signaling mechanisms resulting from the interaction between Robo2 and NELL1/2 in acidic conditions.  相似文献   

4.
We have in recent years described several endothelial-specific genes that mediate cell migration. These include Robo4 (roundabout 4), CLEC14A (C-type lectin 14A) and ECSCR (endothelial cell-specific chemotaxis regulator) [formerly known as ECSM2 (endothelial cell-specific molecule 2)]. Loss of laminar shear stress induces Robo4 and CLEC14A expression and an endothelial 'tip cell' phenotype. Low shear stress is found not only at sites of vascular occlusion such as thrombosis and embolism, but also in the poorly structured vessels that populate solid tumours. The latter probably accounts for strong expression of Robo4 and CLEC14A on tumour vessels. The function of Robo4 has, in the past, aroused controversy. However, the recent identification of Unc5B as a Robo4 ligand has increased our understanding and we hypothesize that Robo4 function is context-dependent. ECSCR is another endothelial-specific protein that promotes filopodia formation and migration, but, in this case, expression is independent of shear stress. We discuss recent papers describing ECSCR, including intracellular signalling pathways, and briefly contrast these with signalling by Robo4.  相似文献   

5.
6.
Slit proteins are secreted ligands that interact with the Roundabout (Robo) receptors to provide important guidance cues in neuronal and vascular development. Slit–Robo signalling is mediated by an interaction between the second Slit domain and the first Robo domain, as well as being dependent on heparan sulphate. In an effort to understand the role of the other Slit domains in signalling, we determined the crystal structure of the fourth Slit2 domain (D4) and examined the effects of various Slit2 constructs on chick retinal ganglion cell axons. Slit2 D4 forms a homodimer using the conserved residues on its concave face, and can also bind to heparan sulphate. We observed that Slit2 D4 frequently results in growth cones with collapsed lamellipodia and that this effect can be inhibited by exogenously added heparan sulphate. Our results show that Slit2 D4–heparan sulphate binding contributes to a Slit–Robo signalling mechanism more intricate than previously thought.  相似文献   

7.
Triggering receptor expressed on myeloid cells-1 (TREM-1) exists in two forms: a transmembrane form and a soluble form (sTREM-1). The levels of sTREM-1 are elevated in supernatants of activated HSCs. However, the role of sTREM-1 in HSC activation and liver fibrosis remains undefined. Previous studies have primarily focused on the transmembrane form of TREM-1; we innovatively observed the function of sTREM-1 as a ligand in liver fibrosis and screened its receptor. Here, recombinant sTREM-1 was used as a stimulator which induced HSC activation and further aggravated liver fibrosis. Then, screening for sTREM-1 interacting membrane receptors was performed using pull-down assay followed by mass spectrometry, and the membrane receptor roundabout guidance receptor 2 (Robo2) was identified as a candidate receptor for sTREM-1. The interaction between sTREM-1 and Robo2 was verified by pull-down and immunofluorescence. The role of Robo2 on sTREM-1-induced HSC activation and its downstream signal pathways was assessed by knockdown of Robo2 in LX-2 cells. Furthermore, HSC-specific knockdown of Robo2 was achieved in a mouse model of liver fibrosis by using a recombinant adeno-associated virus (AAV) vector to confirm the role of the receptor, and we proved that Robo2 knockdown inhibited the activation of HSC and liver fibrosis, which also led to the inactivation of Smad2/3 and PI3K/Akt pathways in sTREM-1-induced HSC activation and liver fibrosis. In conclusion, sTREM-1 acts as a new ligand of Robo2; the binding of sTREM-1 to Robo2 initiates the activation of the downstream Smad2/3 and PI3K/Akt signalling pathways, thereby promoting HSC activation and liver fibrosis.  相似文献   

8.
9.
Antiangiogenic molecules exert a feedback control to restrain pathological angiogenesis, which includes physical binding or inhibition of angiogenic signaling in blood vessel endothelial cells. The latter is the case in which Slit2 ligand-dependent activation of the blood vessel endothelial cell receptor roundabout 4 (Robo4) occurs. In this study, we demonstrate that Robo4 receptors are upregulated following HSV infection of the eye on the majority of the new blood vessel endothelial cells that occur in the corneal stroma. However, expression levels of the ligand for Robo4 receptors, Slit2, was not significantly increased during the disease process, and the knockdown of Slit2 gene expression using lentiviral short hairpin RNAs had no effect on the extent of pathological angiogenesis. In contrast, providing additional Slit2 protein by subconjunctival administration resulted in significantly reduced angiogenesis. The Slit2 binding to Robo4 was shown to block the downstream vascular endothelial growth factor signaling molecules Arf 6 and Rac 1 and reduce the antiapoptotic molecule Bcl-xL in blood vessel endothelial cells. Our results indicate that augmenting the host Robo4/Slit2 system could provide a useful therapeutic approach to control pathological angiogenesis associated with HSV induced stromal keratitis.  相似文献   

10.

Background

Roundabouts are axon guidance molecules that have recently been identified to play a role in vascular guidance as well. In this study, we have investigated gene knockdown analysis of endothelial Robos, in particular roundabout 4 (robo4), the predominant Robo in endothelial cells using small interfering RNA technology in vitro.

Results

Robo1 and Robo4 knockdown cells display distinct activity in endothelial cell migration assay. The knockdown of robo4 abrogated the chemotactic response of endothelial cells to serum but enhanced a chemokinetic response to Slit2, while robo1 knockdown cells do not display chemotactic response to serum or VEGF. Robo4 knockdown endothelial cells unexpectedly show up regulation of Rho GTPases. Zebrafish Robo4 rescues both Rho GTPase homeostasis and serum reduced chemotaxis in robo4 knockdown cells. Robo1 and Robo4 interact and share molecules such as Slit2, Mena and Vilse, a Cdc42-GAP. In addition, this study mechanistically implicates IRSp53 in the signaling nexus between activated Cdc42 and Mena, both of which have previously been shown to be involved with Robo4 signaling in endothelial cells.

Conclusion

This study identifies specific components of the Robo signaling apparatus that work together to guide directional migration of endothelial cells.  相似文献   

11.
The Slit family of guidance cues binds to Roundabout (Robo) receptors to modulate neuronal, leukocytic, and endothelial migration. Slit-Robo signaling had been reported to function as chemoattractive signal for vascular endothelial cells during angiogenesis. In this study, we found that Robo1 was expressed in lymphatic endothelial cells to mediate the migration and tube formation of these cells upon Slit2 stimulation, which were specifically inhibited by the function-blocking antibody R5 to Slit2/Robo1 interaction. To further explore the lymphangiogenic effect and significance mediated by Slit-Robo signaling, we intercrossed Slit2 transgenic mice with a non-metastatic RIP1-Tag2 mouse tumor model, and found that transgenic overexpression of Slit2 significantly enhanced tumor lymphangiogenesis and subsequently promoted mesenteric lymph node metastasis of pancreatic islet tumors. Taken together, our findings reveal that through interacting with Robo1, Slit2 is a novel and potent lymphangiogenic factor and contributes to tumor lymphatic metastasis.  相似文献   

12.
Robo4 is an endothelial cell-specific member of the Roundabout axon guidance receptor family. To identify Robo4 binding partners, we performed a protein-protein interaction screen with the Robo4 extracellular domain. We find that Robo4 specifically binds to UNC5B, a vascular Netrin receptor, revealing unexpected interactions between two endothelial guidance receptors. We show that Robo4 maintains vessel integrity by activating UNC5B, which inhibits signaling downstream of vascular endothelial growth factor (VEGF). Function-blocking monoclonal antibodies against Robo4 and UNC5B increase angiogenesis and disrupt vessel integrity. Soluble Robo4 protein inhibits VEGF-induced vessel permeability and rescues barrier defects in Robo4(-/-) mice, but not in mice treated with anti-UNC5B. Thus, Robo4-UNC5B signaling maintains vascular integrity by counteracting VEGF signaling in endothelial cells, identifying a novel function of guidance receptor interactions in the vasculature.  相似文献   

13.
The angiogenic sprout has been compared to the growing axon, and indeed, many proteins direct pathfinding by both structures. The Roundabout (Robo) proteins are guidance receptors with well-established functions in the nervous system; however, their role in the mammalian vasculature remains ill defined. Here we show that an endothelial-specific Robo, Robo4, maintains vascular integrity. Activation of Robo4 by Slit2 inhibits vascular endothelial growth factor (VEGF)-165-induced migration, tube formation and permeability in vitro and VEGF-165-stimulated vascular leak in vivo by blocking Src family kinase activation. In mouse models of retinal and choroidal vascular disease, Slit2 inhibited angiogenesis and vascular leak, whereas deletion of Robo4 enhanced these pathologic processes. Our results define a previously unknown function for Robo receptors in stabilizing the vasculature and suggest that activating Robo4 may have broad therapeutic application in diseases characterized by excessive angiogenesis and/or vascular leak.  相似文献   

14.
Roundabout(Robo)蛋白是神经轴突导向分子家族Slit蛋白的单次跨膜受体,属于一种神经细胞粘附分子。Robo蛋白在神经系统已被确认具有重要轴突导向功能。近年来研究发现,血管新生的内皮细胞表面只特异性地表达Robo4,且Robo4对内皮细胞迁移、病理性血管生成和血管完整性都具有调节作用。缺血性脑血管病是人类致残甚至死亡的主要疾病之一,由于短暂或持续的脑血流减少而造成脑细胞损伤,因此,恢复脑血流、促进血管再生对脑功能恢复至关重要。Robo4对血管方面的作用为我们进一步研究及了解其在血管生成中的机制提供重要依据,也为缺血性脑血管病的治疗提供新的发展方向。  相似文献   

15.
roundabout (robo) family genes play key roles in axon guidance in a wide variety of animals. We have investigated the roles of the robo family members, robo, robo2, and robo3, in the guidance of sensory axons in the Drosophila embryo. In robo(-/-), slit(-/-), and robo(-/+) slit(-/+) mutants, lateral cluster sensory neurons misproject to cells and axons in the nearby ventral' (v') cluster. These phenotypes, together with the normal expression pattern of Slit and Robo, suggest that Slit ligand secreted from the epidermis interacts with Robo receptors on lateral cluster sensory growth cones to limit their exploration of nearby attractive substrates. The most common sensory axon phenotype seen in robo2(-/-) mutants was misprojection of dorsal cluster sensory axons away from their normal growth substrate, the transverse connective of the trachea. slit appears to play no role in this aspect of sensory axon growth. Robo2 is expressed, not on the dorsal sensory axons, but on the transverse connective. These results suggest a novel, non-cell-autonomous mechanism for axon guidance by robo family genes: Robo2 expressed on the trachea acts as an attractant for the dorsal sensory growth cones.  相似文献   

16.
The Roundabout (Robo) family of receptors and their extracellular ligands, the Slit protein family, play important roles in repulsive axon guidance. First identified in Drosophila, Robo receptors form an evolutionarily conserved sub-family of the immunoglobulin (Ig) superfamily that are characterized by the presence of five Ig repeats and three fibronectin-type III repeats in the extracellular domain, a transmembrane domain, and a cytoplasmic domain with several conserved motifs that play important roles in Robo-mediated signaling (Cell 92 (1998) 205; Cell 101 (2000) 703). Robo family members have now been identified in C. elegans, Xenopus, rat, mouse, and human (Cell 92 (1998) 205; Cell 92 (1998) 217; Cell 96 (1999) 807; Dev. Biol. 207 (1999) 62). Furthermore, multiple robo genes have been described in Drosophila, rat, mouse and humans, raising the possibility of potential redundancy and diversity in robo gene function. As a first step in elucidating the role of Robo receptors during vertebrate development, we identified and characterized two Robo family members from zebrafish. We named these zebrafish genes robo1 and robo3, reflecting their amino acid sequence similarity to other vertebrate robo genes. Both genes are dynamically expressed in the developing nervous system in distinct patterns. robo3 is expressed during the first day of development in the hindbrain and spinal cord and is later expressed in the tectum and retina. robo1 nervous system expression appears later in development and is more restricted. Moreover, both genes are expressed in non-neuronal tissues consistent with additional roles for these genes during development.  相似文献   

17.
Magic roundabout, a tumor endothelial marker: expression and signaling   总被引:3,自引:0,他引:3  
Molecular signals that guide blood vessels to specific paths are not fully deciphered, but are thought to be similar to signals that mediate neuronal guidance. These cues are not only critical for normal blood vessel development, but may also play a major role in tumor angiogenesis. In this study, we have demonstrated the tumor endothelial specific expression of a Robo family member, magic roundabout (MRB), functionally characterized its role in endothelial cell migration and defined a signaling pathway that might mediate this function. We show that MRB is differentially over-expressed in tumor endothelial cells versus normal adult endothelial cells in numerous solid tumors. Moreover, over-expression of MRB in endothelial cells activates MRB in a ligand-independent fashion, and activation of MRB via Slit2, a putative ligand, results in inhibition of VEGF and FGF induced migration. We also demonstrate that MRB induced inhibition of endothelial migration is partially mediated by the Ras-Raf-Mek-Erk signaling pathway. We therefore hypothesize that expression of MRB is involved in regulating the migration of endothelial cells during tumor angiogenesis.  相似文献   

18.
The Slit molecules are chemorepulsive ligands that regulate axon guidance at the midline of both vertebrates and invertebrates. In mammals, there are three Slit genes, but only Slit2 has been studied in any detail with regard to mammalian brain commissure formation. Here, we sought to understand the relative contributions that Slit proteins make to the formation of the largest brain commissure, the corpus callosum. Slit ligands bind Robo receptors, and previous studies have shown that Robo1(-/-) mice have defects in corpus callosum development. However, whether the Slit genes signal exclusively through Robo1 during callosal formation is unclear. To investigate this, we compared the development of the corpus callosum in both Slit2(-/-) and Robo1(-/-) mice using diffusion magnetic resonance imaging. This analysis demonstrated similarities in the phenotypes of these mice, but crucially also highlighted subtle differences, particularly with regard to the guidance of post-crossing axons. Analysis of single mutations in Slit family members revealed corpus callosum defects (but not complete agenesis) in 100% of Slit2(-/-) mice and 30% of Slit3(-/-) mice, whereas 100% of Slit1(-/-); Slit2(-/-) mice displayed complete agenesis of the corpus callosum. These results revealed a role for Slit1 in corpus callosum development, and demonstrated that Slit2 was necessary but not sufficient for midline crossing in vivo. However, co-culture experiments utilising Robo1(-/-) tissue versus Slit2 expressing cell blocks demonstrated that Slit2 was sufficient for the guidance activity mediated by Robo1 in pre-crossing neocortical axons. This suggested that Slit1 and Slit3 might also be involved in regulating other mechanisms that allow the corpus callosum to form, such as the establishment of midline glial populations. Investigation of this revealed defects in the development and dorso-ventral positioning of the indusium griseum glia in multiple Slit mutants. These findings indicate that Slits regulate callosal development via both classical chemorepulsive mechanisms, and via a novel role in mediating the correct positioning of midline glial populations. Finally, our data also indicate that some of the roles of Slit proteins at the midline may be independent of Robo signalling, suggestive of additional receptors regulating Slit signalling during development.  相似文献   

19.
Slit2-Mediated chemorepulsion and collapse of developing forebrain axons   总被引:15,自引:0,他引:15  
Diffusible chemorepellents play a major role in guiding developing axons toward their correct targets by preventing them from entering or steering them away from certain regions. Genetic studies in Drosophila revealed a novel repulsive guidance system that prevents inappropriate axons from crossing the CNS midline; this repulsive system is mediated by the Roundabout (Robo) receptor and its secreted ligand Slit. In rodents, Robo and Slit are expressed in the spinal cord and Slit can repel spinal motor axons in vitro. Here, we extend these findings into higher brain centers by showing that Robo1 and Robo2, as well as Slit1 and Slit2, are often expressed in complementary patterns in the developing forebrain. Furthermore, we show that human Slit2 can repel olfactory and hippocampal axons and collapse their growth cones.  相似文献   

20.
Surrounded by Slit--how forebrain commissural axons can be led astray.   总被引:3,自引:0,他引:3  
Linda J Richards 《Neuron》2002,33(2):153-155
In Drosophila, Slit acts as a barrier preventing roundabout expressing axons from entering the midline and sorting contralaterally from ipsilaterally projecting axons. Hutson and Chien, Plump et al., and Bagri et al. (all in this issue of Neuron) use Slit knockout mice and zebrafish astray/Robo2 mutants to show that in vertebrates, Robo/Slit function to channel axons into specific pathways and determine where decussation points occur. Ipsilaterally and contralaterally projected axons are equally affected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号