首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Nerve growth factor (NGF) binding to p75(NTR) influences TrkA signaling, yet the molecular mechanism is unknown. We observe that NGF stimulates TrkA polyubiquitination, which was attenuated in p75(-/-) mouse brain. TrkA is a substrate of tumor necrosis factor receptor-associated factor 6 (TRAF6), and expression of K63R mutant ubiquitin or an absence of TRAF6 abrogated TrkA polyubiquitination and internalization. NGF stimulated formation of a TrkA/p75(NTR) complex through the p62 scaffold, recruiting the E3/TRAF6 and E2/UbcH7. Peptide targeted to the TRAF6 binding site present in p62 blocked interaction with TRAF6 and inhibited ubiquitination of TrkA, signaling, internalization, and NGF-dependent neurite outgrowth. Mutation of K485 to R blocked TRAF6 and NGF-dependent polyubiquitination of TrkA, resulting in retention of the receptor on the membrane and an absence in activation of specific signaling pathways. These findings reveal that polyubiquitination serves as a common platform for the control of receptor internalization and signaling.  相似文献   

2.
3.
The atypical protein kinase C (aPKC)-interacting protein, p62, has previously been shown to interact with RIP, linking these kinases to NF-kappaB activation by tumor necrosis factor alpha (TNFalpha). The aPKCs have been implicated in the activation of IKKbeta in TNFalpha-stimulated cells and have been shown to be activated in response to interleukin-1 (IL-1). Here we demonstrate that the inhibition of the aPKCs or the down-regulation of p62 severely abrogates NF-kappaB activation by IL-1 and TRAF6, suggesting that both proteins are critical intermediaries in this pathway. Consistent with this we show that p62 selectively interacts with the TRAF domain of TRAF6 but not that of TRAF5 or TRAF2 in co-transfection experiments. The binding of endogenous p62 to TRAF6 is stimulus dependent, reinforcing the notion that this is a physiologically relevant interaction. Furthermore, we demonstrate that the N-terminal domain of TRAF6, which is required for signaling, interacts with zetaPKC in a dimerization-dependent manner. Together, these results indicate that p62 is an important intermediary not only in TNFalpha but also in IL-1 signaling to NF-kappaB through the specific adapters RIP and TRAF6.  相似文献   

4.
Sequestosome 1/p62 is a scaffolding protein with several interaction modules that include a PB1 dimerization domain, a TRAF6 (tumor necrosis factor receptor-associated factor 6) binding site, and a ubiquitin-associating (UBA) domain. Here, we report that p62 functions to facilitate K63-polyubiquitination of TRAF6 and thereby mediates nerve growth factor-induced activation of the NF-kappaB pathway. In brain of p62 knock-out mice we did not recover polyubiquitinated TRAF6. The UBA domain binds polyubiquitin chains and deletion of p62-UBA domain or mutation of F406V within the ubiquitin binding pocket of the UBA domain abolished TRAF6 polyubiquitination. Likewise, deletion of p62 N-terminal dimerization domain or the TRAF6 binding site had similar effects on both polyubiquitination and oligomerization of TRAF6. Nerve growth factor treatment of PC12 cells induced TRAF6 polyubiquitination along with formation of a p62-TRAF6-IKKbeta-PKC iota signal complex, while inhibition of the p62/TRAF6 interaction had an opposite effect. These results provide evidence for a mechanism whereby p62 serves to regulate the NF-kappaB pathway.  相似文献   

5.
The neurosteroid dehydroepiandrosterone (DHEA), produced by neurons and glia, affects multiple processes in the brain, including neuronal survival and neurogenesis during development and in aging. We provide evidence that DHEA interacts with pro-survival TrkA and pro-death p75(NTR) membrane receptors of neurotrophin nerve growth factor (NGF), acting as a neurotrophic factor: (1) the anti-apoptotic effects of DHEA were reversed by siRNA against TrkA or by a specific TrkA inhibitor; (2) [(3)H]-DHEA binding assays showed that it bound to membranes isolated from HEK293 cells transfected with the cDNAs of TrkA and p75(NTR) receptors (K(D): 7.4 ± 1.75 nM and 5.6 ± 0.55 nM, respectively); (3) immobilized DHEA pulled down recombinant and naturally expressed TrkA and p75(NTR) receptors; (4) DHEA induced TrkA phosphorylation and NGF receptor-mediated signaling; Shc, Akt, and ERK1/2 kinases down-stream to TrkA receptors and TRAF6, RIP2, and RhoGDI interactors of p75(NTR) receptors; and (5) DHEA rescued from apoptosis TrkA receptor positive sensory neurons of dorsal root ganglia in NGF null embryos and compensated NGF in rescuing from apoptosis NGF receptor positive sympathetic neurons of embryonic superior cervical ganglia. Phylogenetic findings on the evolution of neurotrophins, their receptors, and CYP17, the enzyme responsible for DHEA biosynthesis, combined with our data support the hypothesis that DHEA served as a phylogenetically ancient neurotrophic factor.  相似文献   

6.
Previous work demonstrated an essential role for the atypical protein kinase C interacting protein, p62, in neurotrophin survival and differentiation signaling. Here we show that p62 interacts not only with TrkA but also with TrkB and TrkC, which are the primary receptors for brain-derived neurotrophic factor and neurotrophin-3. The interaction of p62 with TrkA requires the kinase activity of TrkA. Mapping analysis indicates that p62 does not compete with Shc for binding to TrkA, and p62 association was confined to the juxtamembrane region of TrkA, amino acids 472-493. By immunofluorescence the colocalization of p62 and TrkA was observed 30 min post-nerve growth factor treatment within overlapping vesicular structures. Upon subcellular fractionation, activated TrkA colocalized to an endosomal compartment and p62 was coassociated with the receptor post-nerve growth factor stimulation. Moreover, an absence of p62 blocked internalization of TrkA without an effect on phosphorylation of either TrkA or MAPK; however, Erk5 signaling was selectively abrogated. We propose that p62 plays a novel role in connecting receptor signals with the endosomal signaling network required for mediating TrkA-induced differentiation.  相似文献   

7.
Recent evidence indicates that nerve growth factor (NGF) produces its effects through signaling contributions from both TrkA and the p75 receptor. In contrast to its trophic actions through TrkA, NGF binding to p75 has been shown to activate programmed cell death through a mechanism involving the stress kinase JNK. However, this receptor also activates nuclear factor kappaB (NF-kappaB), the role of which has yet to be determined. We investigated the function of p75-mediated NF-kappaB stimulation in regulating cell survival in the rat schwannoma cell line RN22, which expresses p75, but not TrkA. Gel shift assays demonstrated activation of NF-kappaB in response to NGF within 30 min and lasting at least 4 h. NGF also stimulated JNK in the cells (detected by in vitro kinase assays) with a similar time course. Preventing activation of NF-kappaB with the specific inhibitor SN50 resulted in NGF-induced cell loss. Similarly, transfection of the cells with a mutant form of the endogenous NF-kappaB inhibitor (IkappaBalphaDeltaN), which cannot be degraded and therefore remains bound to NF-kappaB, preventing its activation, resulted in a significant increase in the number of apoptotic cells following NGF treatment. These results suggest that NGF activation of NF-kappaB through the p75 receptor promotes survival, counterbalancing the pro-apoptotic signal.  相似文献   

8.
The Zyxin/Ajuba family of cytosolic LIM domain-containing proteins has the potential to shuttle from sites of cell adhesion into the nucleus and thus can be candidate transducers of environmental signals. To understand Ajuba's role in signal transduction pathways, we performed a yeast two-hybrid screen with the LIM domain region of Ajuba. We identified the atypical protein kinase C (aPKC) scaffold protein p62 as an Ajuba binding partner. A prominent function of p62 is the regulation of NF-kappaB activation in response to interleukin-1 (IL-1) and tumor necrosis factor signaling through the formation of an aPKC/p62/TRAF6 multiprotein signaling complex. In addition to p62, we found that Ajuba also interacted with tumor necrosis factor receptor-associated factor 6 (TRAF6) and PKCzeta. Ajuba recruits TRAF6 to p62 and in vitro activates PKCzeta activity and is a substrate of PKCzeta. Ajuba null mouse embryonic fibroblasts (MEFs) and lungs were defective in NF-kappaB activation following IL-1 stimulation, and in lung IKK activity was inhibited. Overexpression of Ajuba in primary MEFs enhances NF-kappaB activity following IL-1 stimulation. We propose that Ajuba is a new cytosolic component of the IL-1 signaling pathway modulating IL-1-induced NF-kappaB activation by influencing the assembly and activity of the aPKC/p62/TRAF6 multiprotein signaling complex.  相似文献   

9.
Sequestosome 1 (SQSTM1)/p62 is an interacting partner of the atypical protein kinase C zeta/iota and serves as a scaffold for cell signaling and ubiquitin binding, which is critical for several cell functions in vivo such as osteoclastogenesis, adipogenesis, and T cell activation. Here we report that in neurons of p62-/- mouse brain there is a detectable increase in ubiquitin staining paralleled by accumulation of insoluble ubiquitinated proteins. The absolute amount of each ubiquitin chain linkage measured by quantitative mass spectrometry demonstrated hyperaccumulation of Lys63 chains in the insoluble fraction recovered from the brain of p62-/- mice, which correlated with increased levels of Lys63-ubiquitinated TrkA receptor. The increase in Lys63 chains was attributed in part to diminished activity of the TRAF6-interacting the Lys63-deubiquitinating enzyme (DUB), cylindromatosis tumor suppressor (CYLD). The interaction of CYLD with TRAF6 was dependent upon p62, thus defining a mechanism that accounts for decreased activity of CYLD in the absence of p62. These findings reveal that p62 serves as an adapter for the formation of this complex, thereby regulating the DUB activity of CYLD by TRAF6 interaction. Thus, p62 has a bifunctional role in regulation of an E3 ubiquitin-protein ligase, TRAF6, and a DUB, CYLD, to balance the turnover of Lys63-polyubiquitinated proteins such as TrkA.  相似文献   

10.
The two members of the atypical protein kinase C (aPKC) subfamily of isozymes (zetaPKC and lambda/iotaPKC) are involved in the control of nuclear factor kappaB (NF-kappaB) through IKKbeta activation. Here we show that the previously described aPKC-binding protein, p62, selectively interacts with RIP but not with TRAF2 in vitro and in vivo. p62 bridges the aPKCs to RIP, whereas the aPKCs link IKKbeta to p62. In this way, a signaling cascade of interactions is established from the TNF-R1 involving TRADD/RIP/p62/aPKCs/IKKbeta. These observations define a novel pathway for the activation of NF-kappaB involving the aPKCs and p62. Consistent with this model, the expression of a dominant-negative mutant lambda/iotaPKC impairs RIP-stimulated NF-kappaB activation. In addition, the expression of either an N-terminal aPKC-binding domain of p62, or its C-terminal RIP-binding region are sufficient to block NF-kappaB activation. Furthermore, transfection of an antisense construct of p62 severely abrogates NF-kappaB activation. Together, these results demonstrate that the interaction of p62 with RIP serves to link the atypical PKCs to the activation of NF-kappaB by the TNFalpha signaling pathway.  相似文献   

11.
The neurotrophin receptors p75 and tyrosine protein kinase receptor A (TrkA) play important roles in the development and survival of the nervous system. Biochemical data suggest that p75 and TrkA reciprocally regulate the activities of each other. For instance, p75 is able to regulate the response of TrkA to lower concentrations of nerve growth factor (NGF), and TrkA promotes shedding of the extracellular domain of p75 by α-secretases in a ligand-dependent manner. The current model suggests that p75 and TrkA are regulated by means of a direct physical interaction; however, the nature of such interaction has been elusive thus far. Here, using NMR in micelles, multiscale molecular dynamics, FRET, and functional studies, we identified and characterized the direct interaction between TrkA and p75 through their respective transmembrane domains (TMDs). Molecular dynamics of p75-TMD mutants suggests that although the interaction between TrkA and p75 TMDs is maintained upon mutation, a specific protein interface is required to facilitate TrkA active homodimerization in the presence of NGF. The same mutations in the TMD protein interface of p75 reduced the activation of TrkA by NGF as well as reducing cell differentiation. In summary, we provide a structural model of the p75–TrkA receptor complex necessary for neuronal development stabilized by TMD interactions.  相似文献   

12.
Nerve growth factor (NGF) is an important neuronal survival factor, especially during development. Optimal sensitivity of the survival response to NGF requires the presence of TrkA and the p75 neurotrophin receptor, p75(NTR). Signalling pathways used by TrkA are well established, but the mechanisms by which p75(NTR) enhances NGF signalling remain far from clear. A prevalent view is that p75(NTR) and TrkA combine to form a high-affinity receptor, but definitive evidence for this is still lacking. We therefore investigated the possibility that p75(NTR) and TrkA interact via their signal transduction pathways. Using antisense techniques to down-regulate p75(NTR) and TrkA, we found that p75(NTR) specifically enhanced phosphorylation of the 46- and 52-kDa isoforms of Shc during nerve growth factor-induced TrkA activation. p75(NTR) did not enhance tyrosine phosphorylation of other TrkA substrates. Serine phosphorylation of Akt, downstream of Shc activation, was also p75(NTR)-dependent. We consistently detected co-immunoprecipitation of p75(NTR) and Shc. These data indicate that p75(NTR) interacts with Shc physically, via a binding interaction, and functionally, by assisting its phosphorylation. Whilst providing evidence that p75(NTR) augments TrkA signal transduction, these results do not preclude the presence of a p75(NTR)-TrkA high-affinity NGF receptor.  相似文献   

13.
14.
β-amyloid precursor protein (APP) is a key factor in Alzheimer''s disease (AD) but its physiological function is largely undetermined. APP has been found to regulate retrograde transport of nerve growth factor (NGF), which plays a crucial role in mediating neuronal survival and differentiation. Herein, we reveal the mechanism underlying APP-mediated NGF trafficking, by demonstrating a direct interaction between APP and the two NGF receptors, TrkA and p75NTR. Downregulation of APP leads to reduced cell surface levels of TrkA/p75NTR and increased endocytosis of TrkA/p75NTR and NGF. In addition, APP-deficient cells manifest defects in neurite outgrowth and are more susceptible to Aβ-induced neuronal death at physiological levels of NGF. However, APP-deficient cells show better responses to NGF-stimulated differentiation and survival than control cells. This may be attributed to increased receptor endocytosis and enhanced activation of Akt and MAPK upon NGF stimulation in APP-deficient cells. Together, our results suggest that APP mediates endocytosis of NGF receptors through direct interaction, thereby regulating endocytosis of NGF and NGF-induced downstream signaling pathways for neuronal survival and differentiation.  相似文献   

15.
Amyloid β (Aβ) aggregates are the primary component of senile plaques in Alzheimer disease (AD) patient’s brain. Aβ is known to bind p75 neurotrophin receptor (p75NTR) and mediates Aβ-induced neuronal death. Recently, we showed that NGF leads to p75NTR polyubiquitination, which promotes neuronal cell survival. Here, we demonstrate that Aβ stimulation impaired the p75NTR polyubiquitination. TRAF6 and p62 are required for polyubiquitination of p75NTR on NGF stimulation. Interestingly, we found that overexpression of TRAF6/p62 restored p75NTR polyubiquitination upon Aβ/NGF treatment. Aβ significantly reduced NF-κB activity by attenuating the interaction of p75NTR with IKKβ. p75NTR increased NF-κB activity by recruiting TRAF6/p62, which thereby mediated cell survival. These findings indicate that TRAF6/p62 abrogated the Aβ-mediated inhibition of p75NTR polyubiquitination and restored neuronal cell survival.  相似文献   

16.
We have previously shown that the activity of the interleukin-1 (IL-1) receptor-associated kinase (IRAK) is required for nerve growth factor (NGF)-induced activation of NF-kappaB and cell survival ((2002) J. Biol. Chem. 277, 28010-28018). Herein we demonstrate that NGF induces co-association of IRAK with atypical protein kinase C iota (PKC) and that the iota PKC.IRAK complex is recruited to the p75 neurotrophin receptor. Recruitment of IRAK to the receptor was dependent upon the activity of the iota PKC. Moreover, transfection of kinase-dead iota PKC blocked both NGF- and IL-1-induced IRAK activation and the activity of NF-kappaB. Hence, iota PKC lies upstream of IRAK in the kappaB pathway. Examining the primary structure of IRAK, we identified three putative PKC phosphorylation sites; iota PKC selectively phosphorylated peptide 1 (RTAS) within the death domain domain at Thr66, which is highly conserved among all IRAK family members. Mutation of Thr66 to Ala impaired the autokinase activity of IRAK and reduced its association with iota PKC but not TRAF6, resulting in impaired NGF- as well as IL-1-induced NF-kappaB activation. These findings provide insight into the underlying mechanism whereby IRAK regulates the kappaB pathway and reveal that IRAK is a substrate of iota PKC.  相似文献   

17.
Wehrman T  He X  Raab B  Dukipatti A  Blau H  Garcia KC 《Neuron》2007,53(1):25-38
Nerve growth factor engages two structurally distinct transmembrane receptors, TrkA and p75, which have been proposed to create a "high-affinity" NGF binding site through formation of a ternary TrkA/NGF/p75 complex. To define a structural basis for the high-affinity site, we have determined the three-dimensional structure of a complete extracellular domain of TrkA complexed with NGF. The complex reveals a crab-shaped homodimeric TrkA structure, but a mechanism for p75 coordination is not obvious. We investigated the heterodimerization of membrane-bound TrkA and p75, on intact mammalian cells, using a beta-gal protein-protein interaction system. We find that NGF dimerizes TrkA and that p75 exists on the cell surface as a preformed oligomer that is not dissociated by NGF. We find no evidence for a direct TrkA/p75 interaction. We propose that TrkA and p75 likely communicate through convergence of downstream signaling pathways and/or shared adaptor molecules, rather than through direct extracellular interactions.  相似文献   

18.
Nerve growth factor (NGF) binding to its receptors TrkA and p75(NTR) enhances the survival, differentiation, and maintenance of neurons. Recent studies have suggested that NGF receptor activation may occur in caveolae or caveolae-like membranes (CLM). This is an intriguing possibility because caveolae have been shown to contain many of the signaling intermediates in the TrkA signaling cascade. To examine the membrane localization of TrkA and p75(NTR), we isolated caveolae from 3T3-TrkA-p75 cells and CLM from PC12 cells. Immunoblot analysis showed that TrkA and p75(NTR) were enriched about 13- and 25-fold, respectively, in caveolae and CLM. Binding and cross-linking studies demonstrated that the NGF binding to both TrkA and p75(NTR) was considerably enriched in CLM and that about 90% of high affinity binding to TrkA was present in CLM. When PC12 cells were treated with NGF, virtually all activated (i.e. tyrosine phosphorylated) TrkA was found in the CLM. Remarkably, in NGF-treated cells, it was only in CLM that activated TrkA was coimmunoprecipitated with phosphorylated Shc and PLCgamma. These results document a signaling role for TrkA in CLM and suggest that both TrkA and p75(NTR) signaling are initiated from these membranes.  相似文献   

19.
Amyloid β (Aβ) aggregates are the primary component of senile plaques in Alzheimer disease (AD) patient’s brain. Aβ is known to bind p75 neurotrophin receptor (p75NTR) and mediates Aβ-induced neuronal death. Recently, we showed that NGF leads to p75NTR polyubiquitination, which promotes neuronal cell survival. Here, we demonstrate that Aβ stimulation impaired the p75NTR polyubiquitination. TRAF6 and p62 are required for polyubiquitination of p75NTR on NGF stimulation. Interestingly, we found that overexpression of TRAF6/p62 restored p75NTR polyubiquitination upon Aβ/NGF treatment. Aβ significantly reduced NF-κB activity by attenuating the interaction of p75NTR with IKKβ. p75NTR increased NF-κB activity by recruiting TRAF6/p62, which thereby mediated cell survival. These findings indicate that TRAF6/p62 abrogated the Aβ-mediated inhibition of p75NTR polyubiquitination and restored neuronal cell survival.  相似文献   

20.
Nerve growth factor (NGF) promotes proliferation via its high affinity receptor (TrkA). Its precursor proNGF promotes apoptosis via the pan-neurotrophin-receptor p75. Recently, we have identified NGF and p75 as important hair growth terminators. However, if proNGF is involved or if NGF can also promote hair growth via TrkA is unclear. By RT-PCR we found that NGF/proNGF mRNA levels peak during early anagen in murine back skin, whereas NGF/proNGF protein levels peak during catagen, indicating high turnover in early anagen and protein accumulation in catagen. By immunohistochemistry, NGF and TrkA are found in the proliferating compartments of the epidermis and hair follicle throughout the cycle. In contrast, strong proNGF is found in the highly differentiated inner root sheath and adjacent to the p75+ regressing epithelial strand in catagen. Commercial 7S NGF, which contains both NGF and proNGF, promotes anagen development in organ-cultured early anagen mouse skin, whereas it promotes catagen development in late anagen skin. Together, our findings suggest an anagen-promoting or anagen-supporting role for NGF/TrkA, and a catagen-promoting role for proNGF/p75 interactions. This has important implications for the future design of specific neurotrophin receptor ligands as novel pharmaceuticals in the modification of tissue remodeling processes such as hair growth or wound healing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号