首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In adult crayfish, Procambarus clarkii, motoneurons to a denervated abdominal superficial flexor muscle regenerate long-lasting and highly specific synaptic connections as seen from recordings of excitatory postsynaptic potentials, even when they arise from the ganglion of another crayfish. To confirm the morphological origins of these physiological connections we examined the fine structure of the allotransplanted tissue that consisted of the third abdominal ganglion and the nerve to the superficial flexor muscle (the fourth ganglion and the connecting ventral nerve cord were also included). Although there is considerable degeneration, the allotransplanted ganglia display intact areas of axon tracts, neuropil, and somata. Thus in both short (6–8 weeks) and long (24–30 weeks) term transplants approximately 20 healthy somata are present and this is more than the five axons regenerated to the host muscle. The principal neurite and dendrites of these somata receive both excitatory and inhibitory synaptic inputs, and these types of synaptic contacts also occur among the dendritic profiles of the neuropil. Axon tracts in the allotransplanted ganglia and ventral nerve cord consist largely of small diameter axons; most of the large axons including the medial and lateral giant axons are lost. The transplanted ganglia have many blood vessels and blood lacunae ensuring long-term survival. The transplanted superficial flexor nerve regenerates from the ventral to the dorsal surface of the muscle where it has five axons, each consisting of many profiles rather than a single profile. This indicates sprouting of the individual axons and accounts for the enlarged size of the regenerated nerve. The regenerated axons give rise to normal-looking synaptic terminals with well-defined synaptic contacts and presynaptic dense bars or active zones. Some of these synaptic terminals lie in close proximity to degenerating terminals, suggesting that they may inhabit old sites and in this way ensure target specificity. The presence of intact somata, neuropil, and axon tracts are factors that would contribute to the spontaneous firing of the transplanted motoneurons. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
Deep and superficial flexor muscles in the crayfish abdomen are innervated respectively by small populations of physiologically distinct phasic and tonic motoneurons. Phasic motoneurons typically produce large EPSP's, releasing 100 to 1000 times more transmitter per synapse than their tonic counterparts, and exhibiting more rapid synaptic depression with maintained stimulation. Freeze-fracturing the abdominal flexor muscles yielded images of phasic and tonic synapse-bearing terminals. The two types of synapse are qualitatively similar in ultrastructure, displaying on the presynaptic membrane's P-face synaptic contacts recognized by relatively particle-free oval plaques which are often framed by the muscle fiber's E-face leaflet with its associated receptor particles. Situated within these presynaptic plaques are discrete clusters of large intramembrane particles, forming active zone (AZ) sites specialized for transmitter release. AZs of phasic and tonic synapses are similar: 80% had a range of 15–40 large particles distributed in either paired spherical clusters or in linear form, with a few depressions denoting sites of synaptic vesicle fusion or retrieval around their perimeters. The packing density of particles is similar for phasic and tonic AZs. The E-face of the muscle membrane displays oval-shaped receptor-containing sites made up of tightly packed intramembranous particles. Phasic and tonic receptor particles are packed at similar densities and the measured values resemble those of several other crustacean and insect neuromuscular junctions. Overall, the similarity between phasic and tonic synapses in the packing density of particles at their presynaptic AZs and postsynaptic receptor surfaces suggests similar regulatory mechanisms for channel insertion and spacing. Furthermore, the findings suggest that morphological differences in active zones or receptor surfaces cannot account for large differences in transmitter release per synapse.  相似文献   

3.
Crustacean muscles are innervated by phasic and tonic motor neurons that display differential physiology and have morphologically distinct synaptic terminals. Phasic motor neurons release much more transmitter per impulse and have filiform terminals, whereas tonic motor neurons release less transmitter and have larger terminals with prominent varicosities. Using an antibody raised against Drosophila frequenin (frq), a calcium-binding protein that enhances transmitter release in Drosophila synaptic terminals, we found that frq-like immunoreactivity is prominent in many of the phasic, but not tonic nerve endings of crayfish motor neurons. In contrast, synapsin- and dynamin-like immunoreactivities are strongly expressed in both types of terminal. The immunocytochemical findings strongly suggested the presence of an frq-like molecule in crayfish, and its differential expression indicated a possible modulatory role in transmitter release. Therefore, we cloned the cDNA sequences for the crayfish and lobster homologues of Drosophila frq. Crustacean frequenins are very similar in sequence to their Drosophila counterpart, and calcium-binding regions (EF hands) are conserved. The widespread occurrence of frq-like molecules and their differential localization in crayfish motor neurons indicate a significant role in physiology or development of these neurons.  相似文献   

4.
Synaptic differentiation among crustacean phasic motoneurons was investigated by characterizing the synaptic output and nerve terminal morphology of the two axons to the adductor exopodite muscle in the crayfish uropod. The muscle is of the fast type with short sarcomeres (2–3 μm) and a low thin to thick filament number (6:1). On single muscle fibers, excitatory postsynaptic potentials generated by the large-diameter axon are significantly larger than those by the small-diameter axon suggesting a presynaptic origin for these differences. Nerve terminals arising from these two axons have typical phasic features, filiform shape and a low (6–8%) mitochondrial density. Synaptic contacts are similar in size between the two axons as is the length and number of active zone dense bars at these synapses. The large-diameter axon, however, exhibits a twofold larger area of nerve terminal than the small-diameter axon resulting in a higher density of synapses per muscle fiber. Hence, differences in synaptic density may in part account for differences in synaptic output between these paired phasic axons. Electronic Publication  相似文献   

5.
Donor nerves of different origins, when transplanted onto a previously denervated adult crayfish abdominal superficial flexor muscle (SFM), regenerate excitatory synaptic connections. Here we report that an inhibitory axon in these nerves also regenerates synaptic connections based on observation of nerve terminals with irregular to elliptically shaped synaptic vesicles characteristic of the inhibitory axon in aldehyde fixed tissue. Inhibitory terminals were found at reinnervated sites in all 12 allotransplanted-SFMs, underscoring the fact that the inhibitory axon regenerates just as reliably as the excitatory axons. At sites with degenerating nerve terminals and at sparsely reinnervated sites, we observe densely stained membranes, reminiscent of postsynaptic membranes, but occurring as paired, opposing membranes, extending between extracellular channels of the subsynaptic reticulum. These structures are not found at richly innervated sites in allotransplanted SFMs, in control SFMs, or at several other crustacean muscles. Although their identity is unknown, they are likely to be remnant postsynaptic membranes that become paired with collapse of degenerated nerve terminals of excitatory and inhibitory axons. Because these two axons have uniquely different receptor channels and intramembrane structure, their remnant postsynaptic membranes may therefore attract regenerating nerve terminals to form synaptic contacts selectively by excitatory or inhibitory axons, resulting in postsynaptic specification.  相似文献   

6.
Crustacean muscles are innervated by phasic and tonic motor neurons that display differential physiology and have morphologically distinct synaptic terminals. Phasic motor neurons release much more transmitter per impulse and have filiform terminals, whereas tonic motor neurons release less transmitter and have larger terminals with prominent varicosities. Using an antibody raised against Drosophila frequenin (frq), a calcium‐binding protein that enhances transmitter release in Drosophila synaptic terminals, we found that frq‐like immunoreactivity is prominent in many of the phasic, but not tonic nerve endings of crayfish motor neurons. In contrast, synapsin‐ and dynamin‐like immunoreactivities are strongly expressed in both types of terminal. The immunocytochemical findings strongly suggested the presence of an frq‐like molecule in crayfish, and its differential expression indicated a possible modulatory role in transmitter release. Therefore, we cloned the cDNA sequences for the crayfish and lobster homologues of Drosophila frq. Crustacean frequenins are very similar in sequence to their Drosophila counterpart, and calcium‐binding regions (EF hands) are conserved. The widespread occurrence of frq‐like molecules and their differential localization in crayfish motor neurons indicate a significant role in physiology or development of these neurons. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 165–175, 1999  相似文献   

7.
We explain in detail how to expose and conduct electrophysiological recordings of synaptic responses for high (phasic) and low (tonic) output motor neurons innervating the extensor muscle in the walking leg of a crayfish. Distinct differences are present in the physiology and morphology of the phasic and tonic nerve terminals. The tonic axon contains many more mitochondria, enabling it to take a vital stain more intensely than the phasic axon. The tonic terminals have varicosities, and the phasic terminal is filiform. The tonic terminals are low in synaptic efficacy but show dramatic facilitated responses. In contrast, the phasic terminals are high in quantal efficacy but show synaptic depression with high frequency stimulation. The quantal output is measured with a focal macropatch electrode placed directly over the visualized nerve terminals. Both phasic and tonic terminals innervate the same muscle fibers, which suggests that inherent differences in the neurons, rather than differential retrograde feedback from the muscle, account for the morphological and physiological differentiation.Download video file.(61M, mov)  相似文献   

8.
An explant culture system is described that allows examination of axonal growth from the tonically and phasically active motoneurons of the abdominal nerve cord of the crayfish. In this preparation, growth occurs from the cut end of the axon while the remainder of the motoneuron is undisturbed. In vitro growth from the branches of the third roots, which contain the axons from the tonic and phasic motoneurons of abdominal ganglia one through four, was verified as axonal by retrograde labeling of axons and neuronal somata within the nerve cord. Growth from the axons of phasic and tonic cells was observed as early as 24 h after plating and continued for an additional 7–10 days. The morphology and growth rates of the motor terminals differed between the tonic and phasic axons. The phasic axons grew significantly faster and branched more often than did the tonic motor axons. These differences in growth may be related to differences in motoneuron size or, may result from differences in electrical activity. Tonic motoneurons show spontaneous impulse activity for up to 6 days in culture, whereas phasic motoneurons show no spontaneous impulse activity. In addition, the differences in growth may be related to the morphological differences in tonic and phasic motor terminals observed in situ. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
An Attempt to Account for the Diversity of Crustacean Muscles   总被引:1,自引:1,他引:0  
Crustacean muscles are known to contain muscle fibers of variableproperties and to be innervated by phasic and/or tonic motoneuronswhich may possess synapses of diverse physiological properties.Frequently, phasic motor axons innervate short-sarcomere phasicmuscle fibers and tonic motor axons innervate long-sarcomeretonic muscle fibers, but some muscles receiving a single (tonic)motor axon contain both phasic and tonic muscle fibers. Althoughit is not known whether neural trophic influences are involvedin muscle differentiation, some neural trophic effects havebeen found in crustaceans, and it is reasonable to assume thatsuch influences may be involved in establishing the definitiveproperties of the muscle. Several other postulates must be made:(1) Phasic and tonic motor axons differ in their trophic effectiveness:(2) muscle fibers innervated relatively early in developmentby a tonic motor axon acquire the properties of tonic musclefibers, while those innervated later become intermediate orphasic muscle fibers; (3) the developmental stage of a growingor regenerating axon terminal plays a role in determinationof synaptic properties. Studies on regenerating limb buds supportthe hypothesis, which can account for the genesis of all observedtypes of crustacean neuromuscular system. Further experimentalwork is necessary to test the hypothesis.  相似文献   

10.
Crustacean Neuromuscular Mechanisms   总被引:1,自引:1,他引:0  
Properties of crustacean muscle fibers and neuromuscular synapsesare discussed, with particular reference to the problems offast and slow contraction, synaptic diversity, and peripheralinhibition. Electrical and mechanical responses of crustacean muscle fibersare variable, and govern to a large extent the muscle's performance.Fast and slow contractions are often mediated by distinct "phasic"and "tonic" muscle fibers, as in abdominal muscles, in whichsuch fibers are segregated into two parallel sets of muscles.In leg muscles the fibers are often heterogeneous in propertiesand innervation. In doubly-motor-innervated muscles of crabsthe axons producing fast and slow contractions preferentiallyinnervate rapidly and slowly contracting fibers, respectively. Crustacean neuromuscular synapses vary greatly in electricalbehavior and in ultrastructural characteristics. Some motoraxons possess both facilitating and nonfacilitating synapses.The proportion of the different types of synapse associatedwith a motor axon probably determines in large measure the propertiesof the postsynaptic potentials evoked by that axon. Pre-synaptic and post-synaptic inhibition both occur, sometimesin the same muscle. The latter type is more common. Pre-synapticinhibition is thought to be mediated by the action of an inhibitorytransmitter-substance on receptors of the motor nerve terminals.  相似文献   

11.
Comparison of morphological and physiological phenotypes ofrepresentative crustacean motor neurons, and selected motorneurons of Drosophila larval abdominal muscles, shows severalfeatures in common. Crustacean motor nerve terminals, and thoseof Drosophila, possess numerous small synapses with well-definedactive zones. In crustaceans, neurons that are more tonicallyactive have markedly varicose terminals; synapses and mitochondriaare selectively localized in the varicosities. Phasic motoraxons have filiform terminals, sometimes with small varicosities;mitochondrial content is less than for tonic axons, and synapsesare distributed along the terminals. Tonic axons generate smallexcitatory potentials which facilitate strongly at higher frequencies,and which are resistant to depression. Thephasic neurons generatelarge excitatory potentials which exhibit relatively littlefrequency facilitation, and depress rapidly. In Drosophila,counterparts of crustacean phasic and tonic motor neurons havebeen found, but the differentiation is less pronounced. It isinferredthat cellular factors regulating the number of participatingsynapses and the probability of quantal release are similarin crustaceans and Drosophila, and that advantage can be takenof this in future to develop experiments addressing the regulationof synaptic plasticity.  相似文献   

12.
The ultrastructure and acetylcholinesterase activity of the intrinsic innervation of the sphincter of Oddi of eight adult dogs was studied by electron microscopy. A rich distribution of unmyelinated axons embedded individually or as groups within Schwann cell cytoplasm ("innervation fasciculee"), is to be observed. A few myelinated fibres were also observed. Many of the axons are acetylcholinesterase-positive. Three main types of nerve terminals are distinguished according to their vesicle populations. Individual nerve cells or small groups of nerve cells were scattered between the smooth muscle bundles and in the lamina glandularis mucosae. The cytoplasm of some neurons contains many electron dense spherical bodies resembling "myeloid bodies", and many lysosomes. Nerve terminals synapse onto both neuronal perikarya and their dendrites. Within the nerve fascicles, close appositions between the terminals occur frequently probably representing the most peripheral inter-neuronal integrative link in the neural regulation of the function of the sphincter of Oddi. -- The gap between nerve terminals and smooth muscle cells usually measures several thousands of A. Closer appositions are seldom seen, and no synaptic complexes can be observed.  相似文献   

13.
Crustacean phasic and tonic motor neurons   总被引:1,自引:0,他引:1  
Crustacean motor neurons subserving locomotion are specializedfor the type of activity in which they normally participate.Neurons responsible for maintained activity (‘tonic’neurons) support moderate to high frequencies of nerve impulsesintermittently or continuously during locomotion, while thoserecruited for short-lasting rapid responses (‘phasic’neurons) generally fire a few impulses in a rapid burst duringrapid locomotion and are otherwise silent. The synaptic responsesof the two types, recorded at their respective neuromuscularjunctions, differ enormously: phasic neurons exhibit much higherquantal release per synapse and per muscle fibre, along withmore rapid synaptic depression and less short-term facilitation.We have analyzed the factors that are responsible for the largedifference in initial release of neurotransmitter. Several possibilities,including synapse and active zone size differences, entry ofcalcium at active zones, and immediately releasable vesiclepools, could not account for the large phasic-tonic differencein initial transmitter output. The most likely feature thatdifferentiates synaptic release is the sensitivity of the exocytoticmachinery to intracellular calcium. Molecular features of thephasic and tonic presynaptic nerve terminals are currently underinvestigation.  相似文献   

14.
Mitochondria are critical for the function of nerve terminals as the cycling of synaptic vesicle membrane requires an efficient supply of ATP. In addition, the presynaptic mitochondria take part in functions such as Ca2+ buffering and neurotransmitter synthesis. To learn more about presynaptic mitochondria, we have examined their organization in two types of synapse in the lamprey, both of which are glutamatergic but are adapted to different temporal patterns of activity. The first is the giant lamprey reticulospinal synapse, which is specialized to transmit phasic signals (i.e. bursts of impulses). The second is the synapse established by sensory dorsal column axons, which is adapted to tonic activity. In both cases, the presynaptic axons were found to contain two distinct types of mitochondria; small 'synaptic' mitochondria, located near release sites, and larger mitochondria located in more central parts of the axon. The size of the synapse-associated mitochondria was similar in both types of synapse. However, their number differed considerably. Whereas the reticulospinal synapses contained only single mitochondria within 1 micron distance from the edge of the active zone (on average 1.2 per active zone, range of 1-3), the tonic dorsal column synapses were surrounded by clusters of mitochondria (4.5 per active zone, range of 3-6), with individual mitochondria sometimes apparently connected by intermitochondrial contacts. In conjunction with studies of crustacean neuromuscular junctions, these observations indicate that the temporal pattern of transmitter release is an important determinant of the organization of presynaptic mitochondria.  相似文献   

15.
Brain Cell Biology - Separate phasic or tonic nerves allotransplanted to reinnervate a denervated slow superficial flexor muscle (SFM) in the abdomen of adult crayfish regenerate synaptic nerve...  相似文献   

16.
The crustacean dactyl opener neuromuscular system has been studied extensively as a model system that exhibits several forms of synaptic plasticity. We report the ultrastructural features of the synapses on dactyl opener of the lobster (Homarus americanus) as determined by examination of serial thin sections. Several innervation sites supplied by an inhibitory motoneuron have been observed without nearby excitatory innervation, indicating that excitatory and inhibitory inputs to the muscle are not always closely matched. The ultrastructural features of the lobster synapses are generally similar to those described previously for the homologous crayfish muscle, with one major distinction: few dense bars are seen at the presynaptic membranes of these lobster synapses. The majority of the lobster neuromuscular synapses lack dense bars altogether, and the mean number of dense bars per synapse is relatively low. In view of the finding that the physiology of the lobster dactyl opener synapses is similar to that reported for crayfish, these ultrastructural observations suggest that the structural complexity of the synapses may not be a critical factor determining synaptic plasticity.This work was supported by funds from the University of Virginia Research and Development Committee.  相似文献   

17.
Activity and synapse elimination at the neuromuscular junction   总被引:2,自引:0,他引:2  
The neuromuscular junction undergoes a loss of synaptic connections during early development. This loss converts the innervation of each muscle fiber from polyneuronal to single. During this change the number of motor neurons remains constant but the number of muscle fibers innervated by each motor neuron is reduced. Evidence indicates that a local competition among the inputs on each muscle fiber determines which inputs are eliminated. The role of synapse elimination in the development of neuromuscular circuits, other than ensuring a single innervation of each fiber, is unclear. Most evidence suggests that the elimination plays little or no role in correcting for errant connections. Rather, it seems that connections are initially highly specific, in terms of both which motor neurons connect to which muscles and which neurons connect to which particular fibers within these muscles. A number of attempts have been made to determine the importance of neuromuscular activity during early development for this rearrangement of synaptic connections. Experiments reducing neuromuscular activity by muscle tenotomy, deafferentation and spinal cord section, block of nerve impulse conduction with tetrodotoxin, and the use of postsynaptic and presynaptic blocking agents have all shown that normal activity is required for normal synapse elimination. Most experiments in which complete muscle paralysis has been achieved show that activity may be essential for the occurrence of synapse elimination. Furthermore, experiments in which neuromuscular activity has been augmented by external stimulation show that synapse elimination is accelerated. A plausible hypothesis to explain the activity dependence of neuromuscular synapse elimination is that a neuromuscular trophic agent is produced by the muscle fibers and that this production is controlled by muscle-fiber activity. The terminals on each fiber compete for the substance produced by that fiber. Inactive fibers produce large quantities of this substance; on the other hand, muscle activity suppresses the level of synthesis of this agent to the point where only a single synaptic terminal can be maintained. Inactive muscle fibers would be expected to be able to maintain more nerve terminals. The attractiveness of this scheme is that it provides a simple feedback mechanism to ensure that each fiber retains a single effective input.  相似文献   

18.
Summary The fine structure of neuromuscular terminals of the single excitor axon was examined in the limb stretcher muscle of the crayfish Procambarus clarkii. A morphometric comparsion of the neuromuscular terminals of the left and right limbs of a control crayfish showed them to be similiar in qualitative as well as quantitative features. The excitor axon to the stretcher muscle of the right side was stimulated, by backfiring its branches in the adjacent opener muscle, at 20 Hz for 4–5 h per day over 4–5 days. The stretcher muscle on the left side was not stimulated and served as a control. Morphometric analysis of stimulated terminals revealed an increase in the number of dense bars and synaptic vesicles compared to their non-stimulated, contralateral counterparts. Since dense bars are regarded as active sites of transmitter release, changes in their number provide a morphological basis for synaptic plasticity.  相似文献   

19.
Nerve terminal regions in walking leg opener muscles of several crayfish of different ages (0 to 245 days after hatching) were examined by means of electron microscopy. This muscle is innervated by two axons (excitatory and inhibitory) and at maturity contains three classes of synapse: excitatory and inhibitory neuromuscular synapses, and inhibitory axo-axonal synapses. The muscle itself is initially a syncytium, which gradually becomes subdivided into distinct “muscle fibers” as the animal matures. Innervation was not found in the opener muscle just before or just after hatching, but was present in restricted locations on the inner side of the muscle within a few days of hatching. As the muscle enlarged and became subdivided, innervation appeared in various other locations. Synaptic contacts were located in young stages soon after hatching, and in later stages. Morphological differences characteristic of excitatory and inhibitory nerve terminals could be found even at the earliest stages of innervation. Both excitatory and inhibitory synapses, but particularly the former, showed evidence of progressive enlargement to a final size within the first two months, and no evidence for further enlargement of existing synapses thereafter. Synaptic maturation also involved the appearance of presynaptic “dense bodies” thought to be regions at which transmitter substance is preferentially released. Nerve terminals at different levels of maturation were observed in opener muscles of young crayfish. Clear evidence for differential maturation of the three types of synapse present in this muscle was obtained. The inhibitory neuromuscular synapses attained their final average size and developed their dense bodies sooner than the excitatory neuromuscular synapses. The inhibitory axo-axonal synapses were the last to appear and to mature.  相似文献   

20.
When the nerve to an adult frog sartorius muscle is crushed, and axons are allowed to regenerate, the level of polyneuronal innervation at reinnervated neuromuscular junctions is higher than normal. With time, much of this polyneuronal innervation is reduced by the process of synapse elimination (Werle and Herrera, 1988). Using intracellular recording, we estimated the level of polyneuronal innervation in adult frog (Rana pipiens) sartorius muscles 2 years (range: 1.7-2.4 years) after crushing the sartorius nerve. We found that 27% (S.E. = 1.4%) of the junctions in muscles 2 years after reinnervation were polyneuronally innervated, whereas only 10% (S.E. = 1.2%) of the junctions in normal frog muscles were polyneuronally innervated. Thus, the synapse elimination that occurs following reinnervation does not restore the normal level of polyneuronal innervation. Histological comparisons of junctional structure between muscles 2 years after reinnervation and normal muscles revealed substantial differences. Reinnervated junctions had a greater length of synaptic gutter apposed by nerve terminal processes, more axonal inputs, more empty synaptic gutter, more instances of single synaptic gutters innervated by more than one axon, and longer lengths of nerve terminal processes that connect synaptic gutters within a junction. On the basis of this physiological and anatomical evidence, we conclude that nerve injury causes persistent changes in the pattern of muscle innervation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号