首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The environmental and seasonal effects on anatomical traits of Pinus taeda L. seedling roots were studied in the laboratory in three contrasting root growth media and also in typical outdoor nursery culture. Growth media with lower water regimen and high penetration resistance caused a reduction in lengths of the white and condensed tannin (CT) zones and acceleration of development of suberin lamellae in the endodermis. As a possible counter to this reduction in zone lengths, second-order laterals were produced closer to the tips of first-order laterals. This suggested there may be an advantage to producing more shorter roots under stressful conditions. Under outdoor nursery conditions (June to mid-December) the white zone was always a rather small part of the root system surface area (4.5% in December), but it dominated as a provider of cortical plasmalemma surface area (CPSA) in contact with modified soil solution (65% in December) because of its live cortex and capacity to increase nearly three fold the amount of CPSA per unit root length. The CT zone always provided most of the total root surface area (80% in December). Although it had no live cortex, a few cells of the CT zone endodermis remained non-suberized passage cells, perhaps giving this major part of the root system some capacity for ion and water absorption. A late summer increase in CPSA was due largely to the rapid production of mycorrhizae. Root systems were capable of very rapid replacement of roots lost due to undercutting and lateral root pruning. The great variation in CPSA per unit root length contained in the white, mycorrhizal and CT zones suggested a capacity to adapt rapidly to changing conditions.  相似文献   

2.
Growing tree roots are characteristically brown with white tips. The browning process, which occurs as the white region matures, has often been attributed to the deposition of suberin in various tissues. However, in pouch-grown tree seedlings of jack pine (Pinus banksiana Lamb.) and eucalyptus (Eucalyptus pilularis Sm.), browning was not linked to suberization but was caused by the deposition of condensed tannins in the walls of all cells external to the stele. Therefore, we propose using the term “tannin zone” to refer to this region of the root. Vitality tests indicated that the cells of the epidermis and cortex were alive in white regions but were dead in brown regions. Following sequential treatment with berberine hemisulfate and potassium thiocyanate, the cortical walls external to the endodermal Casparian band were full of berberine thiocyanate crystals, indicating that they were permeable to berberine. These walls should also be permeable to water and ions, which have smaller molecular dimensions than the tracer dye. Based on the anatomy and permeability of the tannin zone, we predict that its capacity for ion uptake would be reduced compared to the white zone because of a reduced absorptive plasmalemma surface area. In jack pine, some uptake could be effected by the passage cells of the endodermis. The tannin zone should be even less absorptive in eucalyptus because the exodermis remains an apoplastic barrier and the endodermis lacks passage cells. It is difficult to predict the difference between the tannin and white zones with respect to water uptake. Death of the cells external to the endodermis would reduce the resistance of the root to water movement, but deposition of tannins would increase it. The deposition of suberin lamellae in increasing numbers of endodermal cells may also retard water flow. The anatomy and physiological properties of the tannin zone are unique from those of the distal, white zone and the proximal, cork-clad zone.  相似文献   

3.
Every other week over their second growing season, stem height, collar diameter, shoot and root dry masses, number of lateral roots and length of the tap root were measured on nursery grown seedlings ofAbies balsamea L. Mill.,Pinus banksiana Lamb.,Pinus resinosa Ait.,Picea mariana Mill. BSP andPicea glauca Moench Voss. Root elongation, branching and mycorrhizal development were also recorded.Given species showed distinct seasonal growth patterns. The rate and timing of maximum root growth (mg/dry weight/week) differed markedly between species.Except for the increase in height ofPinus banksiana, root and shoot growth were not negatively correlated.The results are discussed in relation to the performance of tree seedlings in the nursery.  相似文献   

4.
Pine root structure and its potential significance for root function   总被引:2,自引:1,他引:1  
Peterson  Carol A.  Enstone  Daryl E.  Taylor  Jeff H. 《Plant and Soil》1999,217(1-2):205-213
Actively growing roots of pouch-grown Pinus banksiana Lamb. are known to have three anatomically distinct zones, i.e., white, condensed tannin, and cork (in order of increasing distance from the root tip). Roots of pouch and pot-grown Pinus taeda L., and field-grown P. banksiana also develop these three zones. The terminal region of a dormant root resembles the condensed tannin zone, with the addition of a suberized metacutis partially surrounding the apical meristem. White roots are anatomically suited for efficient ion uptake due to the presence of a living cortex. The condensed tannin zones of both growing and dormant roots have a dead cortex but retain passage cells in their endodermal layers, through which some ion uptake could occur. The effect of the maturation from white to condensed tannin zone on water uptake is difficult to predict, but some uptake would occur through the endodermal passage cells. In the young cork zone, no ion and little water absorption should occur. The discrepancies between results of separate anatomical and physiological investigations of tree roots need to be resolved by correlative studies incorporating both approaches in individual experiments. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
This study concerns the effects of four different classes of plant growth regulators on root morphology, patterns of growth and condensed tannin accumulation in transgenic root cultures of Lotus corniculatus L. (Bird's-foot trefoil). Growth of transformed roots in 2,4-dichlorophenoxyacetic acid (2,4-D) resulted in decreased tannin levels relative to controls at concentrations of 10-6 M and above, while gibberellic acid (GA3) inhibited tannin accumulation at concentrations of 10-7 M and above. Benzyladenine (BA) had little effect at low concentrations (10-7 M and below) but resulted in an increase in tannin levels at 10-6 M. Abscisic acid had little effect on levels of condensed tannins at any of the concentrations used. Experiments involving growth regulator addition and medium transfer demonstrated that 2,4-D inhibition of tannin accumulation could be reversed by GA3 and BA, while GA3 downregulation could only be reversed by the addition of 2,4-D. Although 2,4-D inhibited tannin accumulation, addition of 2,4-D to root cultures grown for 14 or 28 days in the absence of plant growth regulators stimulated both growth and tannin biosynthesis. Characteristic alterations in root morphologies accompanied growth regulator-mediated modulation of tannin biosynthesis. Growth in 2,4-D resulted in partially de-differentiated root cultures while growth in GA3 produced roots with an elongated phenotype. Restoration of tannin biosynthesis in 2,4-D-treated roots was accompanied by root re-differentiation and the production of new lateral roots.Abbreviations ABA abscisic acid - BA benzyladenine - 2,4-d 2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid 3 - FW fresh weight  相似文献   

6.
To determine the developmental patterns of arbuscular mycorrhizae (AM) in three crucifers (Brassicaceae) of differing life histories, we inoculated seedlings of the annual Capsella bursa-pastoris, biennial Hesperis matronalis, and the perennial Matthiola incana with Glomus intraradices. The plants were grown either alone or in a matrix of living roots of the mycotrophic grass Sorghum sudanense. The percent root length colonized was greatest in C. bursa-pastoris and least in H. matronalis. Colonization was greater in plants grown in the grass matrix than in plants grown alone, and colonization in grass matrix-grown plants continued to increase over the 90-day growth period, whereas colonization leveled off or decreased near the end of the growth period in crucifers grown alone. No arbuscules were observed in crucifer roots at any time, which suggests that AM in these crucifers is nonfunctional. Furthermore, the increase in colonization only in pots with both crucifers and active mycotrophic roots suggests that AM development in crucifer roots is primarily the consequence of progressive root senescence in the crucifer and continued inoculum spread from the mycotrophic plant.  相似文献   

7.
Although roots of species in the Pinaceae are usually colonized by ectomycorrhizal (EM) fungi, there are increasing reports of the presence of arbuscular mycorrhizal (AM) and dark septate endophytic (DSE) fungi in these species. The objective of this study was to determine the colonization patterns in seedlings of three Pinus (pine) species (Pinus banksiana, Pinus strobus, Pinus contorta) and Picea glauca x Picea engelmannii (hybrid spruce) grown in soil collected from a disturbed forest site. Seedlings of all three pine species and hybrid spruce became colonized by EM, AM, and DSE fungi. The dominant EM morphotype belonged to the E-strain category; limited colonization by a Tuber sp. was found on roots of Pinus strobus and an unknown morphotype (cf. SuillusRhizopogon group) with thick, cottony white mycelium was present on short roots of all species. The three fungal categories tended to occupy different niches in a single root system. No correlation was found between the percent root colonized by EM and percent colonization by either AM or DSE, although there was a positive correlation between percent root length colonized by AM and DSE. Hyphae and vesicles were the only AM intracellular structures found in roots of all species; arbuscules were not observed in any roots.  相似文献   

8.
Boreal forest trees are highly dependent on root-colonizing mycorrhizal fungi. Since the maintenance of mycorrhizal symbiosis implies a significant carbon cost for the host plant, the loss of photosynthetic leaf area due to herbivory is expected to reduce the host investment in mycorrhizae. We tested this hypothesis in a common garden experiment by exposing ectomycorrhizal white birch (Betula pubescens Ehrh.) seedlings to simulated insect defoliation of 50 or 100% intensity during either the previous or the current summer or repeatedly during both seasons before harvest. The shoot and root growth of the seedlings were distinctly reduced by both 100% defoliation and repeated 50% defoliation, and they were more strongly affected by previous-year than current-year defoliation. The root to shoot ratio significantly decreased after 100% defoliation, indicating reduced proportional allocation to the roots. Ergosterol concentration (i.e. fungal biomass) in the fine roots decreased by 100% defoliation conducted either in the year of harvest or in both years. No such decrease occurred following the 100% defoliation conducted in the previous year, indicating the importance of current photosynthates for fungal symbionts. The trend was similar in the colonization percentage of thick-mantled mycorrhizae in the roots, the most marked decline occurring in the repeatedly defoliated seedlings. The present results thus support the prediction that the plant investment in ectomycorrhizae may decline as a response to foliage loss. Moreover, the colonization percentage of thick-mantled mycorrhizae correlated positively with the ratio of leaf to heterotrophic plant biomass in the defoliated birch seedlings, but not in the control ones. This tends to indicate a stronger carbon limitation of ectomycorrhizal colonization in defoliated seedlings.  相似文献   

9.
Norway spruce [Picea abies (L.) Karst.] seedlings, nonmycorrhizal of mycorrhizal with Laccaria laccata or Paxillus involutus were grown in a quartz sand-nutrient solution system for 6 months and then treated with 5 M Pb for 4 days. Element contents of cortex cell wall of young, medium and old short roots were determined by X-ray microanalysis of longitudinal thin sections. The Pb content was influenced neither by age nor by the distance from the root tip (up to 1.7 mm) but was significantly lower in the P. involutus mycorrhizae than in the L. laccata mycorrhizae or in nonmycorrhizal short roots. In the P. involutus mycorrhizae, the P content of the cortex cell walls was twice as high in young mycorrhizae than in old mycorrhizae. In the nonmycorrhizal short roots and the L. laccata mycorrhizae, P content was influenced neither by age nor by distance from the root tip. The Ca and Fe contents of the cortex cell walls increased with age in the nonmycorrhizal short roots and the mycorrhizae. It is concluded that the element content of the cortex cell walls of short roots is strongly influenced by age, while the distance from the root tip seems to be of minor importance.  相似文献   

10.
The development of tap root anatomical features was investigated in seedlings of loblolly pine (Pinus taeda L.) under both pot and pouch growth regimes. The roots possessed the three anatomical zones previously observed in jack pine (Pinus banksiana Lamb) and Eucalyptus pilularis Sm. - white, condensed tannin (CT), and cork - suggesting that this developmental sequence is preserved over species and growth conditions. Xylem development was centripetal and similar to that found earlier in P. sylvestris. Tracheids with lignified, secondary walls were detected distal to the point of endodermal Casparian band deposition. However, tests for ability to conduct fluid indicated that the protoxylem was capable of transport only proximal to the Casparian bands. Detailed examination of suberin lamella deposition in the endodermis demonstrated that passage cells were present through the white and CT zones. Progressive, centripetal cortical death in the CT zone did not include the endodermis, which remained alive until the cork layer formed, at which point the endodermis was crushed. Therefore, passage cells remain as functional portals for nutrient and water uptake in the CT zone even though the central cortex is dead. Tracer tests indicated that the endodermis provides an apoplastic barrier to tracer diffusion into the stele and that this function was taken over by the young cork layers. Results of this study point to a strong role for the endodermis in the regulation of nutrient and water uptake until the maturation of the first cork layer.  相似文献   

11.
Nyssa sylvatica seedlings grown for a year under flooded conditions established endomycorrhizal associations with Glomus mosseae. Lowland ecotypes with endomycorrhizae showed a significant increase in biomass over non-mycorrhizal controls; the greatest difference was in aboveground biomass. Upland ecotypes survived flooding poorly and established fewer endomycorrhizae than lowland ecotypes and did not show any enhanced growth over controls. In general, most endomycorrhizae were formed near main roots and significantly decreased in abundance with distance from the main axes of the root system. It is suggested that under flooded conditions internal oxygen transport may be limiting to mycorrhizae in the more distal roots.  相似文献   

12.
 This study examines the effect of different soil temperatures on root growth in seedlings of Eucalyptus pauciflora Sieber ex Sprengel subsp. pauciflora and Eucalyptus nitens (Deane & Maiden) Maiden. Seedlings were grown in a glasshouse in pots containing soil. Pots were held in water baths maintained at 3, 7 or 13°C, whilst shoots were exposed to ambient glasshouse temperatures. The experiments were designed to separate direct effects of soil temperature from effects due to differences in seedling size. In the first experiment, seedlings were grown to constant height (25 cm for both species), in the second to constant time (100 days for E. pauciflora and 64 days for E. nitens) and in the third experiment seedlings were transferred between soil temperatures. The rate of growth of both species increased with increasing soil temperature. E. nitens grew faster than E. pauciflora at 7 and 13°C, but E. pauciflora grew faster than E. nitens at 3°C. The rate of browning of roots increased with decreasing soil temperature and at a faster rate in E. nitens than E. pauciflora. Root length was highly correlated to root mass within diameter and colour classes (r2 > 0.7). However, brown roots were heavier than white roots. Consequently, changes in root mass did not reflect changes in root length when the proportion of brown to white root also changed. For example, at a constant height of 25 cm at 3°C, E. nitens had greater root mass but lesser root length than E. pauciflora. E. pauciflora at 3°C grew faster, and had more root length and less brown roots than E. nitens. This supports the argument that E. pauciflora is better adapted than E. nitens to survive and grow at lower soil temperatures. Received: 16 December 1996 / Accepted: 2 April 1997  相似文献   

13.
Krasowski  M.J.  Owens  J.N.  Tackaberry  L.E.  Massicotte  H.B. 《Plant and Soil》1999,217(1-2):131-143
Thirty-two one-year-old white spruce (Picea glauca (Moench) Voss) seedlings were grown outdoors for one season in 35 L pots buried in the soil. The pots were vertically split in half. One compartment (mineral) was filled with loamy sand. The bottom of the other compartment (organic) was filled with 10 cm sand topped with 15 cm of organic substrates. Two seedling types (16 seedlings each), (i) polystyroblock-grown and (ii) peat-board grown with mechanical root pruning had their root systems split approximately in half into each of the vertical compartments. Controlled-release (26-12-6 N-P-K) fertilizer was added to one or to none (control) of the compartments. Above-ground growth was positively affected by fertilizer placed in either soil compartmnent. Nutrient content of the foliage was greater in fertilized than in unfertilized seedlings; N and P concentrations were significantly increased. Bud reflushing occurred frequently in fertilized seedlings. Unfertilized container-grown seedlings had the fewest roots in either soil compartment. Unfertilized mechanically-pruned seedlings had significantly greater root length, root surface area, and more root tips in mineral than in organic compartments. They also had more P in current-year leaves than did unfertilized container-grown seedlings. Fertilizer added to mineral compartments significantly affected root growth in these compartments only, whereas when added to organic compartments it affected root growth in both compartments. Root systems of the two seedling types were differently affected by fertilizer: in mechanically-pruned seedlings, the number of roots was reduced but their length and diameter increased; in container-grown seedlings, root proliferation was stimulated and this increased total root length and root surface area. Five ectomycorrhizal morphotypes were identified. E-strain was the most abundant. Except for Cenococcum, all morphotypes were present in nursery stock prior to planting. Changes in distribution of morphotypes after planting appeared related to root health condition rather than to applied fertilizer. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
The morphoregulatory effect of thidiazuron (TDZ) applications to ginseng (Panax quinquefolium L.) seedlings and 3-year-old plants was determined. Applications of TDZ (0.22 and 2.20 ppm), either as foliar sprays or soil drench to greenhouse-grown seedlings over 18 weeks (2 weeks after sowing to 20 weeks when plants were harvested) induced similar responses, in particular, increased stem length and diameter, and shoot and root weight (economic yield). Single foliar applications of TDZ at 62.5 and 125 ppm to 3-year-old field-grown ginseng plants 3 months prior to harvest increased root biomass (economic yield) by 19 to 23%. Roots of TDZ-treated seedlings and 3-year-old field-grown plants developed thickened secondary roots on the upper part of the taproot. The root-like structure of these secondary roots was confirmed by histology. In addition, TDZ treatments induced adventitious buds on the shoulder of 3-year-old roots. These buds developed into shoots to give multi-stem plants following a period of dormancy, which was overcome with GA3 (gibberellic acid) treatment prior to planting.Abbreviations TDZ = thidiazuron - GA3 = gibberellic acid - BA = benzyladenine  相似文献   

15.
The survival, development and mycorrhizal efficiency of a selected strain of Laccaria bicolor along with naturally occurring ectomycorrhizal fungi in a young plantation of Douglas fir was examined. Symbionts were identified and their respective colonization abilities were determined. Eight species of symbiotic fungi, which may have originated in adjacent coniferous forests, were observed on the root systems. Mycorrhizal diversity differed between inoculated (5 taxa) and control (8 taxa) seedlings. Ectomycorrhizal fungi which occurred naturally in the nursery on control seedlings (Thelephora terrestris and Suillus sp.) did not survive after outplanting. Both inoculated and naturally occurring Laccaria species, as well as Cenococcum geophilum, survived on the old roots and colonized the newly formed roots, limiting the colonization by other naturally occurring fungi. Other fungi, such as Paxillus involutus, Scleroderma citrinum and Hebeloma sp. preferentially colonized the old roots near the seedling's collar. Russulaceae were found mainly in the middle section of the root system. Mycorrhizal colonization by Laccaria species on inoculated seedlings (54%) was significantly greater than on controls (13%) which were consequently dominated by the native fungi. Significant differences (up to 239%) were found in the growth of inoculated seedlings, especially in root and shoot weight, which developed mainly during the second year after outplanting. Seedling growth varied with the species of mycorrhizae and with the degree of root colonization. Competitiveness and effectiveness of the introduced strain on improving growth performances of seedlings are discussed.  相似文献   

16.
The height of Pinus radiata Don seedlings grown on soils incorporating different proportions of root tissues (25 and 50%) was shown to be reduced by 20–80%. Seedlings watered with aqueous extracts from soil/root mixtures also showed a significant reduction in growth. This growth-retarding effect was partially overcome by the addition of nutrients or by soil sterilisation. It is postulated that growth retardation was caused not only by nutrient deficiency resulting from the addition of organic matter with a high C/N ratio, but also by phytotoxic substances present in the root tissue. The effect of water extracts of roots from old P. radiata trees on the growth of young P. radiata seedlings and on a mycorrhizal fungus (Rhizopogon sp.) under aseptic conditions was also studied. Extracts from the inner bark of roots caused complete growth inhibition of the mycorrhizal fungus as well as root necrosis and wilting of P. radiata seedlings. A water-soluble substance or substances, toxic both to the roots of P. radiata and to its mycorrhizal fungus, is postulated as the causal agent.  相似文献   

17.
Symbiosis between fungi and plant roots forming a mycorrhiza involves extensive interactions at the molecular level between both partners. The role of plant hormones in the regulation of mycorrhizal infection is not known to involve jasmonates. Their endogenous levels increase during pathogen attack; however, little has been done on their involvement in mycorrhizae. In our recent work, root growth patterns of 2-month-old spruce seedlings after inoculation withPisolithus tinctorius and/or jasmonic acid (JA) treatment were studied using a paper-sandwich technique. Changes in root length, the degree of branching, presence and length of root hairs, and infection parameters were followed using a stereomicroscope. The first mycorrhizal contact of hyphae with roots was significantly accelerated upon treatment with 0.5 M JA. Interactions between root hairs and fungal hyphae were seen by scanning electron microscopy. The multiplication of root hairs of non-mycorrhized seedlings treated with 5.0 M JA and changes of the root surface were observed by the same technique.  相似文献   

18.
Wenger  K.  Gupta  S. K.  Furrer  G.  Schulin  R. 《Plant and Soil》2002,242(2):217-225
White spruce [Picea glauca (Moench) Voss] seedlings were inoculated with Hebeloma crustuliniforme and treated with 25 mM NaCl to examine the effects of salinized soil and mycorrhizae on root hydraulic conductance and growth. Mycorrhizal seedlings had significantly greater shoot and root dry weights, number of lateral branches and chlorophyll content than non-mycorrhizal seedlings. Salt treatment reduced seedling growth in both non-mycorrhizal and mycorrhizal seedlings. However, needles of salt-treated mycorrhizal seedlings had several-fold higher needle chlorophyll content than that in non-mycorrhizal seedlings treated with salt. Mycorrhizae increased N and P concentrations in seedlings. Na levels in shoots and roots of salt-treated mycorrhizal seedlings were significantly lower and root hydraulic conductance was several-fold higher than in non-mycorrhizal seedlings. A reduction of about 50% in root hydraulic conductance of mycorrhizal seedlings was observed after removal of the fungal hyphal sheath. Transpiration and root respiration rates were reduced by salt treatments in both groups of seedlings compared with the controls, however, both transpiration and respiration rates of salt-treated mycorrhizal seedlings were as high as those in the non-mycorrhizal seedlings that had not been subjected to salt treatment. The reduction of shoot Na uptake while increasing N and P absorption and maintaining high transpiration rates and root hydraulic conductance may be important resistance mechanisms in ectomycorrhizal plants growing in salinized soil.  相似文献   

19.
Abstract

Root growth of Arabidopsis seedlings on the surface of agar plates was measured after the seedlings were exposed to volatile organic compounds. Similar to the roots of unexposed seedlings, the roots of seedlings exposed to volatile methanol (control) grew straight down. On the other hand, seedlings exposed to volatile bornyl acetate produced wavy roots. Interestingly, the wavy roots from seedlings exposed to (+)-bornyl acetate were significantly longer than those from seedlings exposed to (?)-bornyl acetate. Exposure to either (+)- or (?)-borneol resulted in thick root tips and reduced root growth. The roots from seedlings treated with (+)-borneol were significantly longer than those from seedlings exposed to (?)-borneol. The interactions between root length and the concentrations of (+)- or (?)-borneol were significantly different, showing that the Arabidopsis seedlings specifically responded to the molecular configuration of the borneol.  相似文献   

20.
The growth,activity and distribution of the fruit tree root system   总被引:3,自引:0,他引:3  
D. Atkinson 《Plant and Soil》1983,71(1-3):23-35
Summary The paper reviews information, much of it obtained from studies using the East Malling root observation laboratories, on the growth and development of the fruit tree root system. The production of new white root varies from year-to-year, generally being highest in the early years. As trees age, woody roots constitute an increasing fraction of total root length although the contribution made by new root growth to the total root length of established trees is also affected by soil management, being higher for trees under grass than under herbicide. Soil management also affects the balance of short (lateral) to long (extension) roots; under grass there are more lateral roots.Calculation of the rate of water uptake per unit root length needed at various times in the year to meet transpirational demand, suggests that woody roots, which recent experimental work has shown to be capable of absorbing water, must be responsible for much of total water supply.Measurements of VA mycorrhizal infection in field-grown trees indicated, for part of the season, higher per cent infection in trees grown under irrigated grass than under herbicide management. It is suggested that this, which is associated with raised leaf phosphorus levels, may be due at least partly to higher numbers of lateral roots, the root type which becomes infected. The growth and functioning of the root system under field conditions depend upon the production and integration of a range of root types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号