首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single cell suspensions of human keratinocytes when seeded onto floating three-dimensional gels constructed with type I collagen form a tissue resembling epidermis. These morphogenetic events occur in a serum-free environment in the absence of fibroblasts. Light and transmission electron microscopy show that cells form a basal layer plus suprabasilar cell layers corresponding to the stratum spinosum, stratum granulosum, and stratum corneum. The suprabasilar keratinocyte layers show morphologies which resemble intact skin in which cells are connected by desmosomes and contain intermediate filaments and keratohyalin-fillagrin granules. The basal cell layer differs from skin in vivo in that there is no connection to a basement membrane via hemidesmosomes. Cells in the basal layers are polarized as evidenced by the secretion of type IV collagen, heparan sulfate proteoglycans, and laminin at the cell membrane interface with the collagen gel. These proteins are not organized into a cytological basement membrane. Bullous pemphigoid antigen, a protein component of hemidesmosomes, is synthesized by basal keratinocytes, but like the basement membrane proteins it is not incorporated into a definable cytological structure. Keratinocytes in the basal and suprabasilar layers also synthesize alpha 2 beta 1 integrins. The mechanisms of keratinocyte adhesion to the gel may be through the interactions of this cell surface receptor with laminin and type IV collagen synthesized by the cell and/or direct interactions between the receptor and type I collagen within the gel. This in vitro experimental system is a useful model for defining the molecular events which control the formation and turnover of basement membranes and the mechanisms by which keratinocytes adhere to type I collagen when sheets of keratinocytes are used clinically for wound coverage.  相似文献   

2.
Electron microscopic immunostaining of rat duodenum and incisor tooth was used to examine the location of four known components of the basement-membrane region: type IV collagen, laminin, heparan sulfate proteoglycan, and fibronectin. Antibodies or antisera against these substances were localized by direct or indirect peroxidase methods on 60-microns thick slices of formaldehyde-fixed tissues. In the basement- membrane region of the duodenal epithelium, enamel-organ epithelium, and blood-vessel endothelium, immunostaining for all four components was observed in the basal lamina (also called lamina densa). The bulk of the lamina lucida (rara) was unstained, but it was traversed by narrow projections of the basal lamina that were immunostained for all four components. In the subbasement-membrane fibrous elements or reticular lamina, immunostaining was confined to occasional "bridges" extending from the epithelial basal-lamina to that of adjacent capillaries. The joint presence of type IV collagen, laminin, heparan sulfate proteoglycan, and fibronectin in the basal lamina indicates that these substances do not occur in separate layers but are integrated into a common structure.  相似文献   

3.
Adhesion to collagens by most cell types is mediated by the integrins α1β1 and α2β1. Both integrin α subunits belong to a group which is characterized by the presence of an I domain in the N-terminal half of the molecule, and this domain has been implicated in the ligand recognition. Since purified α1β1 and α2β1 differ in their binding to collagens I and IV and recognize different sites within the major cell binding domain of collagen IV, we investigated the potential role of the α1 and α2 I domains in specific collagen adhesion. We find that introducing the α2 I domain into α1 results in surface expression of a functional collagen receptor. The adhesion mediated by this chimeric receptor (α1-2-1β1) is similar to the adhesion profile conferred by α2β1, not α1β1. The presence of α2 or α1-2-1 results in preferential binding to collagen I, whereas α1 expressing cells bind better to collagen IV. In addition, α1 containing cells bind to low amounts of a tryptic fragment of collagen IV, whereas α2 or α1-2-1 bearing cells adhere only to high concentrations of this substrate. We also find that collagen adhesion of NIH-3T3 mediated by α2β1 or α1-2-1β1, but not by α1, requires the presence of Mn2+ ions. This ion requirement was not found in CHO cells, implicating the I domain in cell type-specific activation of integrins. J. Cell. Physiol. 176:634–641, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
One of the hallmarks of cells undergoing mitotic division is their rounded morphology and reduced adhesion to the substratum. We have studied and compared the attachment of interphase and mitotic cells to substrata coated with fibronectin and vitronectin. We have found that adhesion of mitotic cells, as compared to interphase cells, is significantly reduced to fibronectin, but is higher to vitronectin. These results correlate well with the expression of α5β1 and αVβ3 integrins, the respective receptors for fibronectin and vitronectin, on the cell surface. Mitotic cells show higher levels of αVβ3 and very low levels of α5β1 proteins on the cell surface as compared to interphase cells. This difference in the levels of these integrins also reflects in the total amounts of fibronectin and vitronectin present on the cell surface of these cells. We have further shown, by flow cytometry, that binding of vitronectin, or the synthetic peptide-GRGDSP-, causes an increase in the intracellular levels of Ca2− in mitotic cells, but no change is seen in the interphase cells. Binding of fibronectin to either of these cells fails to elicit any response. One interesting feature of our results is that the levels of total, i.e., cytoplasmic plus membrane bound, α5β1 and αVβ3 integrins of mitotic and interphase cells remain the same, thus implying an alteration in the distribution of integrin chains between the plasma membrane and the cytoplasm during the conversion of interphase cells into the mitotic phase. © 1996 Wiley-Liss, Inc.  相似文献   

5.
Ligand affinity chromatography was used to identify receptors on platelets and two adherent cell lines, OVCAR-4 and HBL-100, for the E8 fragment of murine laminin. A complex of two polypeptides (140 and 110 kDa nonreduced) was bound by the E8 affinity columns from all three cell types and was eluted with EDTA. This heterodimeric complex was identified as the α6β1 integrin by immunoprecipitation with specific antibodies against either the α6 or the β1 subunit. The α6β1 integrin did not bind to an affinity column containing fragment P1 originating from a different part of murine laminin which, however, bound the αIIbβ3 integrin from platelets. Furthermore, in immunofluorescence staining, the α6β1 integrin localizes in focal contacts of OVCAR-4 cells attached to laminin and E8 but not to fibronectin substrates. These results, combined with previous antibody inhibition studies, unequivocally identify the α6β1 integrin as a specific receptor for fragment E8. Affinity chromatography of OVCAR-4 and HBL-100 cells on a large pepsin fragment of laminin from human placenta yielded integrin α3β1. When α3β1 was removed from lysates of OVCAR-4 cells by preclearing with an α3-specific monoclonal antibody, α6β1 was able to bind to human laminin as well. Integrin α6β1 on platelets which do not express α3β1 binds directly to human laminin. These results indicate that both α3β1 and α6β1 can act as receptors for human laminin and may interfere by steric hindrance. The α6β4 complex, which is strongly expressed on HBL-100 cells, did not bind to either mouse laminin fragment E8 or human laminin affinity columns.  相似文献   

6.
In vitro binding studies with latent matrix metalloproteinase-9 (pro-MMP-9) have revealed the existence of nondisulfide-bonded α2(IV) chains on the cell surface capable of forming a high-affinity complex with the enzyme. Here we investigated the biosynthesis and cellular distribution of α2(IV) and α1(IV) chains in breast epithelial (MCF10A and MDA-MB-231) and fibrosarcoma (HT1080) cells by pulse-chase analysis followed by immunoprecipitation with chain-specific monoclonal antibodies (mAb). These studies showed that whereas the α1(IV) chain remained in the intracellular compartment, nondisulfide-bonded α2(IV) chains were secreted into the media in a stable form. Consistently, only α2(IV) was detected on the cell surface by surface biotinylation or indirect immunofluorescence. In agreement with the pulse-chase analysis, media subjected to coprecipitation experiments with pro-MMP-9 or pro-MMP-9-affinity chromatography followed by immunoblotting with chain-specific mAbs resulted in the detection of α2(IV). A preferential secretion of nondisulfide-bonded α2(IV) chains was also observed in CHO-K1 cells transiently transfected with full-length mouse α2(IV) or α1(IV) cDNAs. However, a complex of mouse α1(IV) with pro-MMP-9 was coprecipitated with exogenous enzyme from lysates of CHO-K1 cells transfected with mouse α1(IV), suggesting that under overexpression conditions the enzyme can also interact with the α1(IV) chain. Collectively, these studies further demonstrate the interactions of pro-MMP-9 with collagen IV chains and a unique processing and targeting of nondisulfide-bonded α2(IV) chains that may play a role in the surface/matrix association of pro-MMP-9. J. Cell. Physiol. 180:131–139, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

7.
As the prevalence of osteoporosis is expected to increase over the next few decades, the development of novel therapeutic strategies to combat this disorder becomes clinically imperative. These efforts draw extensively from an expanding body of knowledge pertaining to the physiologic mechanisms of skeletal homeostasis. To this body of knowledge, we contribute that cells of hematopoietic lineage may play a crucial role in balancing osteoblastic bone formation against osteoclastic resorption. Specifically, our laboratory has previously demonstrated that megakaryocytes (MKs) can induce osteoblast (OB) proliferation in vitro, but do so only when direct cell‐to‐cell contact is permitted. To further investigate the nature of this interaction, we have effectively neutralized several adhesion molecules known to function in the analogous interaction of MKs with another cell type of mesenchymal origin—the fibroblast (FB). Our findings implicate the involvement of fibronectin/RGD‐binding integrins including α3β1 (VLA‐3) and α5β1 (VLA‐5) as well as glycoprotein (gp) IIb (CD41), all of which are known to be expressed on MK membranes. Furthermore, we demonstrate that interleukin (IL)‐3 can enhance MK‐induced OB activation in vitro, as demonstrated in the MK–FB model system. Taken together, these results suggest that although their physiologic and clinical implications are very different, these two models of hematopoietic–mesenchymal cell activation are mechanistically analogous in several ways. J. Cell. Biochem. 109: 927–932, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
Heparin/heparan sulfate interact with growth factors, chemokines, extracellular proteins, and receptors. Integrins are αβ heterodimers that serve as receptors for extracellular proteins, regulate cell behavior, and participate in extracellular matrix assembly. Heparin binds to RGD‐dependent integrins (αIIbβ3, α5β1, αvβ3, and αvβ5) and to RGD‐independent integrins (α4β1, αXβ2, and αMβ2), but their binding sites have not been located on integrins. We report the mapping of heparin binding sites on the ectodomain of αvβ3 integrin by molecular modeling. The surface of the ectodomain was scanned with small rigid probes mimicking the sulfated domains of heparan sulfate. Docking results were clustered into binding spots. The best results were selected for further docking simulations with heparin hexasaccharide. Six potential binding spots containing lysine and/or arginine residues were identified on the ectodomain of αvβ3 integrin. Heparin would mostly bind to the top of the genu domain, the Calf‐I domain of the α subunit, and the top of the β subunit of RGD‐dependent integrins. Three spots were close enough from each other on the integrin surface to form an extended binding site that could interact with heparin/heparan sulfate chains. Because heparin does not bind to the same integrin site as protein ligands, no steric hindrance prevents the formation of ternary complexes comprising the integrin, its protein ligand, and heparin/heparan sulfate. The basic amino acid residues predicted to interact with heparin are conserved in the sequences of RGD‐dependent but not of RGD‐independent integrins suggesting that heparin/heparan sulfate could bind to different sites on these two integrin subfamilies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
10.
There is a critical need for compounds that target cell surface integrin receptors for applications in cancer therapy and diagnosis. We used directed evolution to engineer the Ecballium elaterium trypsin inhibitor (EETI‐II), a knottin peptide from the squash family of protease inhibitors, as a new class of integrin‐binding agents. We generated yeast‐displayed libraries of EETI‐II by substituting its 6‐amino acid trypsin binding loop with 11‐amino acid loops containing the Arg‐Gly‐Asp integrin binding motif and randomized flanking residues. These libraries were screened in a high‐throughput manner by fluorescence‐activated cell sorting to identify mutants that bound to αvβ3 integrin. Select peptides were synthesized and were shown to compete for natural ligand binding to integrin receptors expressed on the surface of U87MG glioblastoma cells with half‐maximal inhibitory concentration values of 10–30 nM. Receptor specificity assays demonstrated that engineered knottin peptides bind to both αvβ3 and αvβ5 integrins with high affinity. Interestingly, we also discovered a peptide that binds with high affinity to αvβ3, αvβ5, and α5β1 integrins. This finding has important clinical implications because all three of these receptors can be coexpressed on tumors. In addition, we showed that engineered knottin peptides inhibit tumor cell adhesion to the extracellular matrix protein vitronectin, and in some cases fibronectin, depending on their integrin binding specificity. Collectively, these data validate EETI‐II as a scaffold for protein engineering, and highlight the development of unique integrin‐binding peptides with potential for translational applications in cancer. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
We previously reported infiltration of immune-inflammatory cells in coronary arteries from cardiac allografts, associated with increased endothelial and smooth muscle cell fibronectin synthesis regulated by interleukin (IL)-1b?. We now investigate, using a porcine endothelial-smooth muscle cell co-culture system, whether IL-1b?-stimulated fibronectin production is functionally important in lymphocyte transendothelial migration. Lymphocytes were harvested from porcine peripheral blood and, in the unactivated state or following activation with phorbol myristic acetate (PMA) and IL-2, were characterized by fluorescence-activated cell sorter (FACS) analysis and added to a confluent endothelial monolayer on the upper chamber of a transwell system. Endothelial cells, as well as smooth muscle cells (in the bottom of the chamber), were stimulated with IL-1b?. Then transendothelial lymphocyte migration was determined in the presence of CS1 and RGD (fibronectin) peptides, blocking α4b?1 and α5b?1 integrin receptors on lymphocyte surfaces, respectively. A 55-70% inhibition of lymphocyte migration was observed when compared to control peptides. The combination of CS1 and RGD peptides did not significantly enhance the inhibitory effect of either peptide alone. A similar decrease in lymphocyte transendothelial migration toward smooth muscle cells was documented using a monoclonal antibody to cellular fibronectin. Furthermore, using smooth muscle cell conditioned medium; we reproduced the enhanced transendothelial lymphocyte migration as well as the inhibition with blocking peptides or fibronectin antibodies. Our data suggest that cytokine-mediated fibronectin synthesis in vascular cells recruits inflammatory cells through interactions of specific peptides with cell surface α4b?1 α5b?1 integrins. © 1995 Wiley-Liss, Inc.  相似文献   

12.
Extracellular divalent cations are important regulators of integrin ligand binding activity. In this study we evaluated how divalent cations affect the organization of integrins into focal adhesion sites. Integrins αvβ3 and αvβ5 were compared because they share a high degree of structural homology and because both integrins mediate cell adhesion to vitronectin. On MG-63 osteosarcoma cells, we found that both the extent and pattern of integrin organization was regulated by the type of extracellular divalent ion. Integrin αvβ3 organized in focal contacts when Mn2+ or Mg2+ was present, but not in Ca2+. In contrast, αvβ5 organized in focal contacts only when Ca2+ or Mg2+ was present. Integrin αvβ5 clustered in a centrally located punctate field on the ventral surface of the cell in the presence of Mn2+. These observations reveal a previously unappreciated role for divalent ions in regulating the organization of integrins into focal adhesion sites. © 1996 Wiley-Liss, Inc.  相似文献   

13.
The maturation of connective tissue involves the organization of collagen fibres by resident fibroblasts. Fibroblast attachment to collagen has been demonstrated to involve cell surface receptors, integrins of the β1 family. Integrins are associated with cytoplasmic actin of microfilaments either directly or through focal adhesions. The major actin isoform of fibroblast microfilaments is β actin and to a lesser extent α smooth muscle (α SM) actin. Cultured human dermal fibroblasts derived from adult dermis, newborn foreskin or keloid scar were grown on either uncoated or collagen-coated surfaces. The expression and synthesis of both α2β1 integrin and α SM actin were followed by immunohistology and immunoprecipitation. Fibroblasts on uncoated surfaces expressed little α2β1 integrin on their surface, while 20 per cent of them demonstrated α SM actin within microfilaments. Fibroblasts grown on a collagen-coated surface minimally expressed α SM actin in microfilament structures and a majority of the cells were positive for α2β1 integrin on their membranes. Using [35S]-methionine incorporation and immunoprecipitation, it was shown that fibroblasts grown in uncoated dishes synthesized more α SM actin than fibroblasts grown on collagen-coated dishes. In contrast, fibroblasts grown on collagen coated dishes synthesized more α2β1 integrin compared to the same cells grown on uncoated dishes. Fibroblasts maintained on a type I collagen upregulate the expression and synthesis of α2β1 integrin, and downregulate the expression and synthesis of α SM actin. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
In the present investigation we studied the metabolism of 1α,25-dihydroxy-[1β-3H] vitamin D3 (3H-1,25(OH)2D3) in culture-grown human keratinocytes (CHK). Our results showed that the cellular uptake of 3H-1,25(OH)2D3, upon incubation with CHK, occurred very rapidly; and it paralleled a decrease in the concentration of 3H-1,25(OH)2D3 in the medium. The amount of 3H-calcitroic acid, on the other hand, increased slowly in the medium, while the concentration of 3H-calcitroic acid in the cell remained undetectable during the whole period of incubation. When the cells were preincubated with 1,25(OH)2D3 (10?8M), conversion of 3H-1,25(OH)2D3 to 3H-calcitroic acid increased almost twofold, indicating that 1,25(OH)2D3 catalyzed its own catabolism. © 1995 Wiley-Liss, Inc.  相似文献   

15.
Dermal fibroblasts are essential for the repair of cutaneous wounds. Fibroblasts presumably use cell surface receptors of the integrin family during migration into a wound from the adjacent uninjured tissue and for the subsequent matrix repairs. We have investigated the possible roles of platelet-derived growth factor and inflammatory cytokines in the regulation of integrin expression on wound fibroblasts using a porcine cutaneous wound model and cultured human cells. Tissue specimens collected from 4-day pig wounds were stained with antibodies specific for the α1 and α5 integrin subunits. Staining for α1 was markedly decreased on fibroblasts adjacent to the wound and in the granulation tissue, while staining for α5 was clearly enhanced in both locations. Normal adult human dermal fibroblasts in culture express the integrins α1β1, a collagen receptor, and α5β1, a fibronectin receptor. Quantitative flow cytometry was used to measure cell surface integrin expression after treatment with platelet-derived growth factor (PDGF)-AA, PDGF-AB, or PDGF-BB. Each isoform of PDGF produced a significant decrease in the level of α1 present on the cell surface and an increase in the level of α5. Furthermore, PDGF-BB produced a corresponding decrease in α1 mRNA and an increase in α5 mRNA. In contrast, treatment with three inflammatory cytokines, IL-1β, TNF-α, and IFN-γ, produced clear increases in the levels of α1 and α5 present on the cell surface. Our observations suggest that the differential effects of PDGF and inflammatory cytokines may be part of the mechanism regulating the expression of α1 and α5 integrins by dermal fibroblasts during wound repair. © 1996 Wiley-Liss, Inc.  相似文献   

16.
Heparan sulfate (HS) sugar chains attached to core proteoglycans (PGs) termed HSPGs mediate an extensive range of cell–extracellular matrix (ECM) and growth factor interactions based upon their sulfation patterns. When compared with non‐osteogenic (maintenance media) culture conditions, under established osteogenic culture conditions, MC3T3‐E1 cells characteristically increase their osteogenic gene expression profile and switch their dominant fibroblast growth factor receptor (FGFR) from FGFR1 (0.5‐fold decrease) to FGFR3 (1.5‐fold increase). The change in FGFR expression profile of the osteogenic‐committed cultures was reflected by their inability to sustain an FGF‐2 stimulus, but respond to BMP‐2 at day 14 of culture. The osteogenic cultures decreased their chondroitin and dermatan sulfate PGs (biglycan, decorin, and versican), but increased levels of the HS core protein gene expression, in particular glypican‐3. Commitment and progress through osteogenesis is accompanied by changes in FGFR expression, decreased GAG initiation but increased N‐ and O‐sulfation and reduced remodeling of the ECM (decreased heparanase expression) resulting in the production of homogenous (21 kDa) HS chain. With the HSPG glypican‐3 expression strongly upregulated in these processes, siRNA was used to knockdown this gene to examine the effect on osteogenic commitment. Reduced glypican‐3 abrogated the expression of Runx2, and thus differentiation. The reintroduction of this HSPG into Runx2‐null cells allowed osteogenesis to proceed. These results demonstrate the dependence of osteogenesis on specific HS chains, in particular those associated with glypican‐3. J. Cell. Physiol. 220: 780–791, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Proteoglycan accumulation by thioglycollate-elicited mouse peritoneal macrophages and a panel of murine monocyte-macrophage cell lines has been examined to determine whether these cells express plasma membrane-anchored heparan sulfate proteoglycans. Initially, cells were screened for heparan sulfate and chondroitin sulfate glycosaminoglycans after metabolic labeling with radiosulfate. Chondroitin sulfate is secreted to a variable extent by every cell type examined. In contrast, heparan sulfate is all but absent from immature pre-monocytes and is associated predominantly with the cell layer of mature macrophage-like cells. In the P388D1 cell line, the cell-associated chondroitin sulfate is largely present as a plasma membrane-anchored proteoglycan containing a 55 kD core protein moiety, which appears to be unique. In contrast, the cell-associated heparan sulfate is composed of a proteoglycan fraction and protein-free glycosaminoglycan chains, which accumulate intracellularly. A fraction of the heparan sulfate proteoglycan contains a lipophilic domain and can be released from cells following mild treatment with trypsin, suggesting that it is anchored in the plasma membrane. Isolation of this proteoglycan indicates that it is likely syndecan-4: it is expressed as a heparan sulfate proteoglycan at the cell surface, it is cleaved from the plasma membrane by low concentrations of trypsin, and it consists of a single 37 kD core protein moiety that co-migrates with syndecan-4 isolated from NMuMG mouse mammary epithelial cells. Northern analysis reveals that a panel of macrophage-like cell lines accumulate similar amounts of syndecan-4 mRNA, demonstrating that this proteoglycan is expressed by a variety of mature macrophage-like cells. Syndecan-1 mRNA is present only in a subset of these cells, suggesting that the expression of this heparan sulfate proteoglycan may be more highly regulated by these cells. © 1993 Wiley-Liss, Inc.  相似文献   

18.
19.
Bone sialoprotein (BSP), a secreted glycoprotein found in bone matrix, has been implicated in the formation of mammary microcalcifications and osteotropic metastasis of human breast cancer (HBC). BSP possesses an integrin-binding RGD (Arg-Gly-Asp) domain, which may promote interactions between HBC cells and bone extracellular matrix. Purified BSP, recombinant human BSP fragments and BSP-derived RGD peptides are shown to elicit migratory, adhesive, and proliferative responses in the MDA-MB-231 HBC cell line. Recombinant BSP fragment analysis localized a significant component of these activities to the RGD domain of the protein, and synthetic RGD peptides with BSP flanking sequences (BSP-RGD) also conferred these responses. The fibronectin-derived RGD counterpart, GRGDSP (Gly-Arg-Gly-Asp-Ser-Pro), could not support these cellular responses, emphasizing specificity of the BSP configuration. Although most of the proliferative and adhesive responses could be attributed to RGD interactions, these interactions were only partly responsible for the migrational responses. Experiments with integrin-blocking antibodies demonstrated that BSP-RGD-induced migration utilizes the αvβ3 vitronectin receptor, whereas adhesion and proliferation responses were αvβ5-mediated. Using fluorescence activated cell sorting, we selected two separate subpopulations of MDA-MB-231 cells enriched for αvβ3 or αvβ5 respectively. Although some expression of the alternate αv integrin was still retained, the αvβ5-enriched MDA-MB-231 cells showed enhanced proliferative and adhesive responses, whereas the αvβ3-enriched subpopulation was suppressed for proliferation and adhesion, but showed enhanced migratory responses to BSP-RGD. In addition, similar analysis of two other HBC cell lines showed less marked, but similar RGD-dependent trends in adhesion and proliferation to the BSP fragments. Collectively, these data demonstrate BSP effects on proliferative, migratory, and adhesive functions in HBC cells and that the RGD-mediated component differentially employs αvβ3 and αvβ5 integrin receptors. J. Cell. Physiol. 176:482–494, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号