首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interleukin-13 is a Th2-associated cytokine responsible for many pathological responses in allergic asthma including mucus production, inflammation, and extracellular matrix remodeling. In addition, IL-13 is required for immunity to many helminth infections. IL-13 signals via the type-II IL-4 receptor, a heterodimeric receptor of IL-13Rα1 and IL-4Rα, which is also used by IL-4. IL-13 also binds to IL-13Rα2, but with much higher affinity than the type-II IL-4 receptor. Binding of IL-13 to IL-13Rα2 has been shown to attenuate IL-13 signaling through the type-II IL-4 receptor. However, molecular determinants that dictate the specificity and affinity of mouse IL-13 for the different receptors are largely unknown. Here, we used high-density overlapping peptide arrays, structural modeling, and molecular docking methods to map IL-13 binding sequences on its receptors. Predicted binding sequences on mouse IL-13Rα1 and IL-13Rα2 were in agreement with the reported human IL-13 receptor complex structures and site-directed mutational analysis. Novel structural differences were identified between IL-13 receptors, particularly at the IL-13 binding interface. Notably, additional binding sites were observed for IL-13 on IL-13Rα2. In addition, the identification of peptide sequences that are unique to IL-13Rα1 allowed us to generate a monoclonal antibody that selectively binds IL-13Rα1. Thus, high-density peptide arrays combined with molecular docking studies provide a novel, rapid, and reliable method to map cytokine-receptor interactions that may be used to generate signaling and decoy receptor-specific antagonists.  相似文献   

2.
The cytokines granulocyte-macrophage colony stimulating factor, interleukin-3 and interleukin-5 have overlapping activities on cells expressing their receptors. This is explained by their sharing a receptor signal transduction subunit, beta c. This communal signaling subunit is also required for high affinity binding of all three cytokines. Therapeutic approaches attempting to interfere or modulate haemopoietic cells using cytokines or their analogues can in some instances be limited due to functional redundancy amongst cytokines using shared receptor signaling subunits. Therefore, a better approach would be to develop therapeutics against the shared subunit. Studies examining the GM-CSF, IL-3 and IL-5 receptors have identified the key events leading to functional receptor activation. With this knowledge, it is now possible to identify new targets for the development of a new class of antagonist that blocks the biological activity of all the cytokines utilizing beta c. This approach may be extended to other receptor systems such as IL-4 and IL-13 where receptor activation is dependent on a common signaling and binding subunit.  相似文献   

3.
S M Zurawski  F Vega  Jr  B Huyghe    G Zurawski 《The EMBO journal》1993,12(7):2663-2670
Interleukin-4 (IL-4) and interleukin-13 (IL-13) are two cytokines that are secreted by activated T cells and have similar effects on monocytes and B cells. We describe a mutant form of human interleukin-4 (hIL-4) that competitively antagonizes both hIL-4 and human interleukin-13 (hIL-13). The amino acid sequences of IL-4 and IL-13 are approximately 30% homologous and circular dichroism (CD) spectroscopy shows that both proteins have a highly alpha-helical structure. IL-13 competitively inhibited binding of hIL-4 to functional human IL-4 receptors (called hIL-4R) expressed on a cell line which responds to both hIL-4 and IL-13. Binding of hIL-4 to an hIL-4 responsive cell line that does not respond to IL-13, and binding of hIL-4 to cloned IL-4R ligand binding protein expressed on heterologous cells, were not inhibited by IL-13. hIL-4 bound with approximately 100-fold lower affinity to the IL-4R ligand binding protein than to functional IL-4R. The mutant hIL-4 antagonist protein bound to both IL-4R types with the lower affinity. The above results demonstrate that IL-4 and IL-13 share a receptor component that is important for signal transduction. In addition, our data establish that IL-4R is a complex of at least two components one of which is a novel affinity converting subunit that is critical for cellular signal transduction.  相似文献   

4.
Mammalian interleukin-4 (IL-4) and IL-13 are T helper type 2 (Th2) cytokines with pleiotropic functions in immunity. They signal through receptors containing IL-4Rα and IL-2Rγ or IL-13Rα1. In addition, a decoy receptor, IL-13Rα2, is known to exist and modulates the function of IL-13. The existence of fish orthologues to mammalian IL-4 and IL-13 is still under debate. However, the receptor chains have been predicted in zebrafish, and we have previously cloned IL-2Rγ and IL-13Rα2 in rainbow trout. In this study, we have cloned a further five novel trout IL-4/13 receptors. Thus, each of the IL-4Rα, IL-13Rα1 and IL-13Rα2 chains has two copies. The identities of the receptors is supported by homology analysis, characteristic domain structure, phylogenetic tree analysis and synteny analysis in zebrafish. However, the characteristic WSXWS motif of structural importance in mammalian type I cytokine receptors is missing in all fish IL-4Rα and IL-13Rα1 molecules. All the receptors have a characteristic domain structure that is similar to their mammalian counterparts except for IL-13Rα1b that has the N-terminal Ig domain missing. Since this Ig domain is a specific and critical binding unit for IL-13 but not for IL-4 signalling, its absence potentially converts the IL-13Rα1b into a receptor that can only signal via IL-4 ligation. The existence of duplicated receptor genes perhaps suggests that more ligands still remain to be discovered that will bind these receptors. The duplicated receptors are differentially expressed in most tissues and cell lines examined, and their expression can be modulated by LPS, polyIC and IFN-γ in cell lines. In contrast, the T-cell stimulant phytohaemagglutinin increased the expression of IL-4Rα1 and IL-4Rα2, but not IL-13Rα1/2, suggesting a role of an IL-4-like molecule in T-cell growth/activation in fish.  相似文献   

5.
The recently identified interleukin-17 (IL-17) cytokines family, which comprises six members in mammals (IL-17A-F), plays essential roles in the host immunity against infectious diseases and chronic inflammatory diseases. The three-dimensional structures containing IL-17A or IL-17F have become available and revealed the unique structural features of IL-17s as well as their receptors. Molecular modeling in this review shows that IL-17s may adopt a “cysteine knot” fold commonly seen in nerve growth factor (NGF) and other neurotrophins. Further modeling analysis unmasks a signature interaction feature of the IL-17F/IL-17RA complex, where a small loop of IL-17RA slots into the deep groove of the interface of IL-17F homodimer. This is quite different from the interaction between the best known four-helix cytokines and their cognate receptors. On the other hand, structure of IL-17A and its monoclonal antibody (CAT-2200) shows that, albeit that the antigenic epitope of IL-17A resides outside of the IL-17A homodimer interface, its physical proximity to the receptor binding groove may explain that antibody blockage would be achieved by interfering with the ligand-receptor interaction. This review is to summarize the advance in understanding the structure and function of IL-17 family cytokines, focusing mainly on IL-17A, IL-17F and IL-17E, in the hope of gaining better knowledge of immunotherapeutic strategies against various inflammatory diseases.  相似文献   

6.
Cytokine traps: multi-component,high-affinity blockers of cytokine action   总被引:14,自引:0,他引:14  
Cytokines can initiate and perpetuate human diseases, and are among the best-validated of therapeutic targets. Cytokines can be blocked by the use of soluble receptors; however, the use of this approach for cytokines such as interleukin (IL)-1, IL-4, IL-6 and IL-13 that use multi-component receptor systems is limited because monomeric soluble receptors generally exhibit low affinity or function as agonists. We describe here a generally applicable method to create very high-affinity blockers called 'cytokine traps' consisting of fusions between the constant region of IgG and the extracellular domains of two distinct cytokine receptor components involved in binding the cytokine. Traps potently block cytokines in vitro and in vivo and represent a substantial advance in creating novel therapeutic candidates for cytokine-driven diseases.  相似文献   

7.
The members of the interleukin-6-type family of cytokines interact with receptors that have a modular structure and are built of several immunoglobulin-like and fibronectin type III-like domains. These receptors have a characteristic cytokine receptor homology region consisting of two fibronectin type III-like domains defined by a set of four conserved cysteines and a tryptophan-serine-X-tryptophan-serine sequence motif. On target cells, interleukin-6 (IL-6) initially binds to its cognate alpha-receptor and subsequently to a homodimer of the signal transducer receptor gp130. The IL-6 receptor (IL-6R) consists of three extracellular domains. The N-terminal immunoglobulin-like domain is not involved in ligand binding, whereas the third membrane-proximal fibronectin-like domain (IL-6R-D3) accounts for more than 90% of the binding energy to IL-6. Here, we present the solution structure of the IL-6R-D3 domain solved by multidimensional heteronuclear NMR spectroscopy.  相似文献   

8.
The Toll/interleukin-1 receptor (TIR) domains are conserved modules in the intracellular regions of the Toll-like receptors (TLRs) and interleukin-1 receptors (IL-1Rs). The domains are crucial for the signal transduction by these receptors, through homotypic interactions among the receptor and the downstream adapter TIR domains. Previous studies showed that the BB loop in the structure of the TIR domain forms a prominent conserved feature on the surface and is important for receptor signaling. Here we report the crystal structure of the C713S mutant of the TIR domain of human TLR2. An extensively associated dimer is observed in the crystal structure and mutations of several residues in this dimer interface abolished the function of the receptor. Moreover, the structure shows that the BB loop can adopt different conformations, which are required for the formation of this dimer. This asymmetric dimer might represent the TLR2:TLRx heterodimer in the function of this receptor.  相似文献   

9.
A model for the structure of the cytokine interleukin-3 (IL-3) is presented based on the structural homology of the hematopoietic cytokines and utilizing the crystal structures of interleukin-5 and granulocyte macrophage colony stimulating factor (GM-CSF). In addition, models of the receptor complexes of GM-CSF and IL-3 are presented based on the structural homology of the hematopoietic receptors to growth hormone. Several key interactions between the ligands and their receptors are discovered, some in agreement with previous mutagenesis studies and others that have not yet been the subject of mutagenesis studies. The models provide insights into the binding of GM-CSF and IL-3 to their receptors.  相似文献   

10.
All cytokines belonging to the interleukin-6 (IL-6)-type family of cytokines utilize receptors that have a modular build of several immunoglobulin-like and fibronectin type III-like domains. Characteristic of these receptors is a cytokine receptor homology region consisting of two such fibronectin domains defined by a set of four conserved cysteines and a tryptophan-serine-X-tryptophan-serine sequence motif. On target cells, interleukin-6 first binds to its specific receptor and subsequently to a homodimer of the signal transducer protein gp130. The interleukin-6 receptor consists of three extracellular domains. The N-terminal immunoglobulin-like domain is not involved in ligand binding, whereas the third membrane proximal fibronectin-like domain accounts for more than 90% of the binding energy to IL-6. Here, the key residues of this fibronectin-like domain involved in the interaction with IL-6 are described. Chemical shift mapping data with 15N-labeled IL-6R-D3 and unlabeled IL-6 coupled with recent structural data clearly reveal the epitope within the IL-6R-D3 responsible for mediating the high affinity interaction with its cognate cytokine.  相似文献   

11.
Interleukin-4 receptor signaling pathways in asthma pathogenesis   总被引:6,自引:0,他引:6  
Asthma is a chronic allergic inflammatory disease, the initiation and progression of which is dependent on the cytokines interleukin (IL)-4 and IL-13 acting through related receptor complexes. Disease pathogenesis is effected by intracellular signaling pathways that couple primarily to specific motifs within the intracellular domain of the IL-4 receptor alpha chain (IL-4Ralpha), a subunit that is common to the IL-4 and IL-13 receptor complexes. Recent studies using genetic approaches have identified distinct functions for the respective IL-4Ralpha-coupled signaling pathways in regulating both early and chronic stages of asthma. Polymorphisms in components of the IL-4 and IL-13 cytokine-receptor axes are associated with allergy and asthma, suggesting that variations among individuals in the activity of this pathway contribute to disease susceptibility and manifestations.  相似文献   

12.
13.
Solution structure of human IL-13 and implication for receptor binding.   总被引:16,自引:0,他引:16  
Interleukin-13 has been implicated as a key factor in asthma, allergy, atopy and inflammatory response, establishing the protein as a valuable therapeutic target. The high-resolution solution structure of human IL-13 has been determined by multidimensional NMR. The resulting structure is consistent with previous short-chain left-handed four-helix bundles, where a significant similarity in the folding topology between IL-13 and IL-4 was observed. IL-13 shares a significant overlap in biological function with IL-4, a result of the common alpha chain component (IL-4Ralpha) in their respective receptors. Based on the available structural and mutational data, an IL-13/IL-4Ralpha model and a sequential mechanism for forming the signaling heterodimer is proposed for IL-13.  相似文献   

14.
The mechanisms by which prenatal events affect development of adult disease are incompletely characterized. Based on findings in a murine model of maternal transmission of asthma risk, we sought to test the role of the pro-asthmatic cytokines interleukin IL-4 and -13. To assess transplacental passage of functional cytokines, we assayed phosphorylation of STAT-6, a marker of IL-4 and -13 signaling via heterodimeric receptor complexes which require an IL-4 receptor alpha subunit. IL-4 receptor alpha−/− females were mated to wild-type males, and pregnant females were injected with supraphysiologic doses of IL-4 or 13. One hour after injection, the receptor heterozygotic embryos were harvested and tissue nuclear proteins extracts assayed for phosphorylation of STAT-6 by Western blot. While direct injection of embryos produced a robust positive control, no phosphorylation was seen after maternal injection with either IL-4 or -13, indicating that neither crossed the placenta in detectable amounts. The data demonstrate a useful approach to assay for transplacental passage of functional maternal molecules, and indicate that molecules other than IL-4 and IL-13 may mediate transplacental effects in maternal transmission of asthma risk.  相似文献   

15.
The mode of binding of interleukin-4 (IL-4) to its two known receptors, specific receptor IL-4R and a shared receptor gamma c, was investigated using gel filtration and gel electrophoresis. A ternary complex between IL-4 and the soluble domains of the two receptors was shown to exist in solution. The association constant between gamma c and the stable complex of IL-4/sIL-4R is in the millimolar range, making the ternary complex a feasible target for crystallization studies.  相似文献   

16.
Studies on Interlukin-4 (IL-4) disclosed great deal of information about its various physiological and pathological roles. All these roles depend upon its interaction and signaling through either type-I (IL-4Rα/common γ-chain) or type-II (IL-4Rα/IL-13Rα) receptors. Another cytokine, IL-13, shares some of the functions of IL-4, because both cytokines use a common receptor subunit, IL-4Rα. Here in this review, we discuss the structural details of IL-4 and IL-4Rα subunit and the structural similarities between IL-4 and IL-13. We also describe detailed chemistry of type-I and type-II receptor complexes and their signaling pathways. Furthermore, we elaborate the strength of type-II hetero dimer signals in response to IL-4 and IL-13. These cytokines are prime players in pathogenesis of allergic asthma, allergic hypersensitivity, different cancers, and HIV infection. Recent advances in the structural and binding chemistry of these cytokines various types of inhibitors were designed to block the interaction of IL-4 and IL-13 with their receptor, including several IL-4 mutant analogs and IL-4 antagonistic antibodies. Moreover, different targeted immunotoxins, which is a fusion of cytokine protein with a toxin or suicidal gene, are the new class of inhibitors to prevent cancer progression. In addition few small molecular inhibitors such as flavonoids have also been developed which are capable of binding with high affinity to IL-4Rα and, therefore, can be very effective in blocking IL-4-mediated responses.  相似文献   

17.
Interleukin-3 (IL-3) is a cytokine produced by activated T-cells and mast cells that is active on a broad range of hematopoietic cells and in the nervous system and appears to be important in several chronic inflammatory diseases. In this study, alanine substitutions were used to investigate the role of residues of the human beta-common (hbetac) receptor and the murine IL-3-specific (beta(IL-3)) receptor in IL-3 binding. We show that the domain 1 residues, Tyr(15) and Phe(79), of the hbetac receptor are important for high affinity IL-3 binding and receptor activation as shown previously for the related cytokines, interleukin-5 and granulocyte-macrophage colony-stimulating factor, which also signal through this receptor subunit. From the x-ray structure of hbetac, it is clear that the domain 1 residues cooperate with domain 4 residues to form a novel ligand-binding interface involving the two protein chains of the intertwined homodimer receptor. We demonstrate by ultracentrifugation that the beta(IL-3) receptor is also a homodimer. Its high sequence homology with hbetac suggests that their structures are homologous, and we identified an analogous binding interface in beta(IL-3) for direct IL-3 binding to the high affinity binding site in hbetac. Tyr(21) (A-B loop), Phe(85), and Asn(87) (E-F loop) of domain 1; Ile(320) of the interdomain loop; and Tyr(348) (B'-C' loop) and Tyr(401) (F'-G' loop) of domain 4 were shown to have critical individual roles and Arg(84) and Tyr(317) major secondary roles in direct murine IL-3 binding to the beta(IL-3)receptor. Most surprising, none of the key residues for direct IL-3 binding were critical for high affinity binding in the presence of the murine IL-3 alpha receptor, indicating a fundamentally different mechanism of high affinity binding to that used by hbetac.  相似文献   

18.
Hormones of the hematopoietin class mediate signal transduction by binding to specific transmembrane receptors. Structural data show that the human growth hormone (hGH) forms a complex with a homodimeric receptor and that hGH is a member of a class of hematopoietins possessing an antiparallel 4-α-helix bundle fold. Mutagenesis experiments suggest that electrostatic interactions may have an important influence on hormone-receptor recognition. In order to examine the specificity of hormone-receptor complexation, an analysis was made of the electrostatic potentials of hGH, interleukin-2 (IL-2), interleukin-4 (IL-4), granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), and the hGH and IL-4 receptors. The binding surfaces of hGH and its receptor, and of IL-4 and its receptor, show complementary electrostatic potentials. The potentials of the hGH and its receptor display approximately 2-fold rotational symmetry because the receptor subunits are identical. In contrast, the potentials of GM-CSF and IL-2 lack such symmetry, consistent with their known high affinity for hetero-oligomeric receptors. Analysis of the electrostatic potentials supports a recently proposed hetero-oligomeric model for a high-affinity IL-4 receptor and suggests a possible new receptor binding mode for G-CSF; it also provides valuable information for guiding structural and mutagenesis studies of signal-transducing proteins and their receptors.  相似文献   

19.
V M Lauta 《Cytokine》2001,16(3):79-86
Study of the network of cytokines has helped identify cell growth factors in multiple myeloma. Plasma cells themselves may produce autocrine interleukin 6 (IL-6) while IL-6 production by bone marrow stromal cells may operate a paracrine mechanism. Involvement of IL-6 in multiple myeloma is indicated by its ability to induce the differentiation of myeloma plasmablasts into mature malignant plasma cells. Differential diagnosis between multiple myeloma and monoclonal gammopathies of undetermined significance (MGUS) is generally based on clinical and laboratory parameters. Nevertheless, evaluation of the serum level of IL-6, C reactive protein, soluble IL-6 receptor, soluble IL-2 receptor together with the activity exerted by IL-3 and IL-4 on some cellular subsets constitutes an additional element in the differential diagnosis of border-line cases. Serum levels of IL-6, soluble IL-6 receptor (sIL-6R), soluble interleukin-2 receptor (sIL-2R) and the expression of membrane-bound IL-2 receptors, both on bone marrow plasma cells and on peripheral blood mononuclear cells are correlated with disease activity and disease stage. In addition, IL-6 and sIL-6R serum levels correlate with the duration of survival, as high values at the time of diagnosis correlate with short duration of survival.  相似文献   

20.
A three-dimensional model of interleukin-4 (IL-4) bound to one molecule each of the high- and low-affinity receptors (IL-4R and IL-2Rγ) was built, using the crystal structure of the complex of human growth hormone (HGH) with its receptor (HGHR) as a starting model. The modeling of IL-4 with its receptors was based on the conservation of the sequences and on the predicted structural organization for cytokine receptors, and assuming that the binding mode of the ligands would be similar. Analysis of the interface between IL-4 and both receptor molecules was carried out to reveal which residues are important for complex formation. The modeling procedures showed that there were no major problems in maintaining a reasonable fit of IL-4 with the two receptor molecules, in a manner analogous to the complex of HGH–HGHR. Many of the residues that appear by modeling to be important for binding between IL-4 and the receptors have been previously implicated in that role by different methods. A striking motif of aromatic and positively charged residues on the surface of the C-terminal domains of the receptors is highly conserved in the structure of HGH–HGHR and in the models of IL-4 complexed with its receptors. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号