首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In most of the pathogenic organisms including Plasmodium falciparum, isoprenoids are synthesized via MEP (MethylErythritol 4-Phosphate) pathway. LytB is the last enzyme of this pathway which catalyzes the conversion of (E)-4-hydroxy-3-methylbut-2-en-1-yl diphosphate (HMBPP) into the two isoprenoid precursors: isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Since the MEP pathway is not used by humans, it represents an attractive target for the development of new anti-malarial compounds or inhibitors. Here a systematic in silico study has been conducted to get an insight into the structure of Plasmodium lytB as well as its affinities towards different inhibitors. We used comparative modeling technique to predict the three-dimensional (3D) structure of Plasmodium LytB taking Escherichia coli LytB protein (PDB ID: 3KE8) as template and the model was subsequently refined through molecular dynamics (MD) simulation. A large ligand data-set containing diphospate group was subjected for virtual screening against the target using GOLD 5.2 program. Considering the mode of binding and affinities, 17 leads were selected on basis of binding energies in comparison to its substrate HMBPP (Gold.Chemscore.DG: -20.9734 kcal/mol). Among them, five were discarded because of their inhibitory activity towards other human enzymes. The rest 12 potential leads carry all the properties of any “drug like” molecule and the knowledge of Plasmodium LytB-inhibitory mechanism which can provide valuable support for the anti-malarial-inhibitor design in future.  相似文献   

2.
Puan KJ  Wang H  Dairi T  Kuzuyama T  Morita CT 《FEBS letters》2005,579(17):3802-3806
Although flavodoxin I is indispensable for Escherichia coli growth, the exact pathway(s) where flavodoxin I is essential has not been identified. We performed transposon mutagenesis of the flavodoxin I gene, fldA, in an E. coli strain that expressed mevalonate pathway enzymes and that had a point mutation in the lytB gene of the MEP pathway resulting in the accumulation of (E)-4-hydroxy-3-methylbutyl-2-enyl pyrophosphate (HMBPP). Disruption of fldA abrogated mevalonate-independent growth and dramatically decreased HMBPP levels. The fldA- mutant grew with mevalonate indicating that the essential role of flavodoxin I under aerobic conditions is in the MEP pathway. Growth was restored by fldA complementation. Since GcpE (which synthesizes HMBPP) and LytB are iron-sulfur enzymes that require a reducing system for their activity, we propose that flavodoxin is essential for GcpE and possibly LytB activity. Thus, the essential role for flavodoxin I in E. coli is in the MEP pathway for isoprenoid biosynthesis.  相似文献   

3.
Xu W  Lees NS  Hall D  Welideniya D  Hoffman BM  Duin EC 《Biochemistry》2012,51(24):4835-4849
(E)-4-Hydroxy-3-methylbut-2-enyl diphosphate reductase (IspH or LytB) catalyzes the terminal step of the MEP/DOXP pathway where it converts (E)-4-hydroxy-3-methylbut-2-enyl diphosphate (HMBPP) into the two products, isopentenyl diphosphate and dimethylallyl diphosphate. The reaction involves the reductive elimination of the C4 hydroxyl group, using a total of two electrons. Here we show that the active form of IspH contains a [4Fe-4S] cluster and not the [3Fe-4S] form. Our studies show that the cluster is the direct electron source for the reaction and that a reaction intermediate is bound directly to the cluster. This active form has been trapped in a state, dubbed FeS(A), that was detected by electron paramagnetic resonance (EPR) spectroscopy when one-electron-reduced IspH was incubated with HMBPP. In addition, three mutants of IspH have been prepared and studied, His42, His124, and Glu126 (Aquifex aeolicus numbering), with particular attention paid to the effects on the cluster properties and possible reaction intermediates. None of the mutants significantly affected the properties of the [4Fe-4S](+) cluster, but different effects were observed when one-electron-reduced forms were incubated with HMBPP. Replacing His42 led to an increased K(M) value and a much lower catalytic efficiency, confirming the role of this residue in substrate binding. Replacing the His124 also resulted in a lower catalytic efficiency. In this case, however, the enzyme showed the loss of the [4Fe-4S](+) EPR signal upon addition of HMBPP without the subsequent formation of the FeS(A) signal. Instead, a radical-type signal was observed in some of the samples, indicating that this residue plays a role in the correct positioning of the substrate. The incorrect orientation in the mutant leads to the formation of substrate-based radicals instead of the cluster-bound intermediate complex FeS(A). Replacing the Glu126 also resulted in a lower catalytic efficiency, with yet a third type of EPR signal being detected upon incubation with HMBPP. (31)P and (2)H ENDOR measurements of the FeS(A) species incubated with regular and (2)H-C4-labeled HMBPP reveal that the substrate binds to the enzyme in the proximity of the active-site cluster with C4 adjacent to the site of linkage between the FeS cluster and HMBPP. Comparison of the spectroscopic properties of this intermediate to those of intermediates detected in (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase and ferredoxin:thioredoxin reductase suggests that HMBPP binds to the FeS cluster via its hydroxyl group instead of a side-on binding as previously proposed for the species detected in the inactive Glu126 variant. Consequences for the IspH reaction mechanism are discussed.  相似文献   

4.
The last enzyme (LytB) of the methylerythritol phosphate pathway for isoprenoid biosynthesis catalyzes the reduction of (E)-4-hydroxy-3-methylbut-2-enyl diphosphate into isopentenyl diphosphate and dimethylallyl diphosphate. This enzyme possesses a dioxygen-sensitive [4Fe-4S] cluster. This prosthetic group was characterized in the Escherichia coli enzyme by UV/visible and electron paramagnetic resonance spectroscopy after reconstitution of the purified protein. Enzymatic activity required the presence of a reducing system such as flavodoxin/flavodoxin reductase/reduced nicotinamide adenine dinucleotide phosphate or the photoreduced deazaflavin radical.  相似文献   

5.
Prolactin has recently been shown to directly stimulate 2 components of the active duodenal calcium transport in female rats, i.e., solvent drag-induced and transcellular-active calcium transport. Since the basolateral Na(+)/K(+)- and Ca(2+)-ATPases, respectively, play important roles in these 2 transport mechanisms, the present study aimed to examine the direct actions of prolactin on the activities of both transporters in sexually mature female Wistar rats. The results showed that 200, 400, and 800 ng/mL prolactin produced a significant increase in the total ATPase activity of duodenal crude homogenate in a dose-dependent manner within 60 min (i.e., from a control value of 1.53 +/- 0.13 to 2.29 +/- 0.21 (p < 0.05), 2.68 +/- 0.19 (p < 0.01), and 3.92 +/- 0.33 (p < 0.001) micromol Pi x (mg protein)(-1) x min(-1), respectively). Activity of Na+/K+-ATPase was increased by 800 ng/mL prolactin from 0.17 +/- 0.03 to 1.18 +/- 0.29 micromol Pi x (mg protein)(-1) x min(-1) (p < 0.01). Prolactin at doses of 400 and 600 ng/mL also significantly increased the activities of Ca(2+)-ATPase in crude homogenate from a control value of 0.84 +/- 0.03 to 1.75 +/- 0.29 (p < 0.05), and 2.30 +/- 0.37 (p < 0.001) micromol Pi x (mg protein)(-1) x min(-1). When the crude homogenate was purified for the basolateral membrane, the Na(+)/K(+)-ATPase activities were elevated 10-fold. In the purified homogenate, 800 ng/mL prolactin increased Na(+)/K(+)-ATPase activity from 1.79 +/- 0.38 to 2.63 +/- 0.44 micromol Pi x (mg protein)(-1) x min(-1) (p < 0.05), and Ca(2+)-ATPase activity from 0.08 +/- 0.14 to 2.03 +/- 0.23 micromol Pi x (mg protein)(-1) x min-1 (p < 0.001). Because the apical calcium entry was the first important step for the transcellular active calcium transport, the brush border calcium uptake was also investigated in this study. We found that, 8 min after being directly exposed to 800 ng/mL prolactin, the brush border calcium uptake into the duodenal epithelial cells was increased from 0.31 +/- 0.02 to 0.80 +/- 0.28 nmol x (mg protein)(-1) (p < 0.05). It was concluded that prolactin directly and rapidly enhanced the brush border calcium uptake as well as the activities of the basolateral Na(+)/K(+)- and Ca(2+)-ATPases in the duodenal epithelium of female rats. These findings explained the mechanisms by which prolactin stimulated duodenal active calcium absorption.  相似文献   

6.
Isoprenoid precursor biosynthesis occurs through the mevalonate or the methylerythritol phosphate (MEP) pathway, used i.e., by humans and by many human pathogens, respectively. In the MEP pathway, 2-C-methyl-d-erythritol-2,4-cyclo-diphosphate (MEcPP) is converted to (E)-1-hydroxy-2-methyl-but-2-enyl-4-diphosphate (HMBPP) by the iron-sulfur cluster enzyme HMBPP synthase (GcpE). The presented X-ray structure of the GcpE-MEcPP complex from Thermus thermophilus at 1.55 Å resolution provides valuable information about the catalytic mechanism and for rational inhibitor design. MEcPP binding inside the TIM-barrel funnel induces a 60° rotation of the [4Fe-4S] cluster containing domain onto the TIM-barrel entrance. The apical iron of the [4Fe-4S] cluster ligates with the C3 oxygen atom of MEcPP.  相似文献   

7.
The GcpE enzyme converts 2-C-methyl-D-erythritol-2,4-cyclodiphosphate (MEcPP) into (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) in the penultimate step of the DOXP pathway for isoprene biosynthesis. Purification of the enzyme under exclusion of air leads to a preparation that contains solely [4Fe-4S] clusters. Kinetic studies showed that in the presence of the artificial reductant dithionite and MEcPP a new transient iron-sulfur-based signal is detected in electron paramagnetic resonance (EPR) spectroscopy. Similarity of this EPR signal to that detected in ferredoxin:thioredoxin reductase indicates that during the reaction an intermediate is directly bound to the active-site cluster.  相似文献   

8.
Urease has been purified from the dehusked seeds of pigeonpea (Cajanus cajan L.) to apparent electrophoretic homogeneity with approximately 200 fold purification, with a specific activity of 6.24 x10(3) U mg(-1) protein. The enzyme was purified by the sequence of steps, namely, first acetone fractionation, acid step, a second acetone fractionation followed by gel filtration and anion-exchange chromatographies. Single band was observed in both native- and SDS-PAGE. The molecular mass estimated for the native enzyme was 540 kDa whereas subunit values of 90 kDa were determined. Hence, urease is a hexamer of identical subunits. Nickel was observed in the purified enzyme from atomic absorption spectroscopy with approximately 2 nickel ions per enzyme subunit. Both jack bean and soybean ureases are serologically related to pigeonpea urease. The amino acid composition of pigeonpea urease shows high acidic amino acid content. The N-terminal sequence of pigeonpea urease, determined up to the 20th residue, was homologous to that of jack bean and soybean seed ureases. The optimum pH was 7.3 in the pH range 5.0-8.5. Pigeonpea urease shows K(m) for urea of 3.0+/-0.2 mM in 0.05 M Tris-acetate buffer, pH 7.3, at 37 degrees C. The turnover number, k(cat), was observed to be 6.2 x 10(4) s(-1) and k(cat)/K(m) was 2.1 x 10(7) M(-1) s(-1). Pigeonpea urease shows high specificity for its primary substrate urea.  相似文献   

9.
In the malaria parasite Plasmodium falciparum isoprenoid precursors are synthesised inside a plastid-like organelle (apicoplast) by the mevalonate independent 1-deoxy-d-xylulose-5-phosphate (DOXP) pathway. The last reaction step of the DOXP pathway is catalysed by the LytB enzyme which contains a [4Fe-4S] cluster. In this study, LytB of P. falciparum was shown to be catalytically active in the presence of an NADPH dependent electron transfer system comprising ferredoxin and ferredoxin-NADP(+) reductase. LytB and ferredoxin were found to form a stable protein complex. These data suggest that the ferredoxin/ferredoxin-NADP(+) reductase redox system serves as the physiological electron donor for LytB in the apicoplast of P. falciparum.  相似文献   

10.
(E)-4-Hydroxy-3-methylbut-2-enyl diphosphate synthase (GcpE), which catalyzes the conversion of 2-C-methyl-D-erythritol cyclodiphosphate (MEcPP) into (E)-4-hydroxy-3-methylbut-2-enyl diphosphate (HMBPP), is an essential enzyme of the non-mevalonate (2-C-methyl-D-erythritol-4-phosphate (MEP)) pathway for isoprenoid biosynthesis. The terminal steps of the MEP pathway are still not fully understood, although this pathway is necessary for survival in various organisms such as cyanobacteria, plastids of algae and higher plants, and the apicoplast of human malaria parasites. To determine the efficient redox partner for thermophilic cyanobacterial GcpE, We have expressed the gcpE and petF genes in Escherichia coli and studied the protein-protein interaction of GcpE protein with ferredoxin I (PetF) from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. Recombinant GcpE protein was purified by an N-terminal His(6) tag and reconstituted as a [4Fe-4S](2+) metalloprotein. GcpE was shown to interact strongly with PetF via the bacterial two-hybrid system designed to detect protein-protein interactions. Moreover, a direct protein-protein interaction between PetF and GcpE was confirmed in an in vitro glutathione S-transferase (GST) pull-down assay. To investigate electron transfer activity from PetF to GcpE, we also constructed a NADPH-dependent reducing shuttle system with purified recombinant ferredoxin-NADP(+) oxidoreductase (PetH) and PetF. The result demonstrated that PetF has the ability to transfer electrons to GcpE. Thus, the combined data provide the first evidence that GcpE is a ferredoxin-dependent enzyme in T. elongatus BP-1.  相似文献   

11.
The mevalonate-independent methylerythritol phosphate pathway is widespread in bacteria. It is also present in the chloroplasts of all phototrophic organisms. Whereas the first steps, are rather well known, GcpE and LytB, the enzymes catalyzing the last two steps have been much less investigated. 2-C-Methyl-D-erythritol 2,4-cyclodiphosphate is transformed by GcpE into 4-hydroxy-3-methylbut-2-enyl diphosphate, which is converted by LytB into isopentenyl diphosphate or dimethylallyl diphosphate. Only the bacterial GcpE and LytB enzymes have been investigated to some extent, but nothing is known about the corresponding plant enzymes. In this contribution, the prosthetic group of GcpE from the plant Arabidopsis thaliana and the bacterium Escherichia coli has been fully characterized by Mössbauer spectroscopy after reconstitution with 57FeCl3, Na2S and dithiothreitol. It corresponds to a [4Fe-4S] cluster, suggesting that both plant and bacterial enzymes catalyze the reduction of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate into (E)-4-hydroxy-3-methylbut-2-enyl diphosphate via two consecutive one-electron transfers. In contrast to the bacterial enzyme, which utilizes NADPH/flavodoxin/flavodoxin reductase as a reducing shuttle system, the plant enzyme could not use this reduction system. Enzymatic activity was only detected in the presence of the 5-deazaflavin semiquinone radical.  相似文献   

12.
The enzyme catalyzing the transfer of glucose from uridine diphosphate glucose to indoxyl yielding the indoxyl glucoside indican was isolated from Baphicacanthus cusia Bremek (Acanthaceae). The indoxyl-uridine diphosphate glucose (UDPG)-glucosyltransferase was purified to homogeneity in six chromatographic steps. The decisive step for the recovery of a homogeneous enzyme was the application of immobilized metal affinity chromatography yielding an 863-fold purified enzyme. From a total of 60 substances tested, in addition to the natural substrate 3-OH-indole (indoxyl), only 4-OH-, 5-OH-, 6-OH-, and 7-OH-indole were accepted as substrates by the glucosyltransferase. However, the latter substrates were metabolized to varying extent. The optimum pH of the enzyme was 8.5, the optimum temperature was 30 degrees C and the isoelectric point was pH 6.5. The M(r) of the enzyme was determined to be 60 +/- 2 x 10(3). Indoxyl as substrate yielded a K(m) of 1.2 mM, while a K(m) of 1.7 mM was found for UDPG.  相似文献   

13.
The Xylella fastidiosa genome program generated a large number of gene sequences that belong to pathogenicity, virulence and adaptation categories from this important plant pathogen. One of these genes (XF1729) encodes a protein similar to a superfamily of aldo-keto reductase together with a number of structurally and functionally related NADPH-dependent oxidoreductases. In this work, the similar sequence XF1729 from X. fastidiosa was cloned onto the pET32Xa/LIC vector in order to overexpress a recombinant His-tag fusion protein in Escherichia coli BL21(DE3). The expressed protein in the soluble fraction was purified by immobilized metal affinity chromatography (agarose-IDA-Ni resin). Secondary structure contents were verified by circular dichroism spectroscopy. Small angle X-ray scattering (SAXS) measurements furnish general structural parameters and provide a strong indication that the protein has a monomeric form in solution. Also, ab initio calculations show that the protein has some similarities with a previously crystallized aldo-keto reductase protein. The recombinant XF1729 purified to homogeneity catalyzed the reduction of dl-glyceraldehyde (K(cat) 2.26s(-1), Km 8.20+/-0.98 mM) and 2-nitrobenzaldehyde (K(cat) 11.74 s(-1), Km 0.14+/-0.04 mM) in the presence of NADPH. The amino acid sequence deduced from XF1729 showed the highest identity (40% or higher) with several functional unknown proteins. Among the identified AKRs, we found approximately 29% of identity with YakC (AKR13), 30 and 28% with AKR11A and AKR11B, respectively. The results establish XF1729 as the new member of AKR family, AKR13B1. Finally, the first characterization by gel filtration chromatography assays indicates that the protein has an elongated shape, which generates an apparent higher molecular weight. The study of this protein is an effort to fight X. fastidiosa, which causes tremendous losses in many economically important plants.  相似文献   

14.
Melatonin, a pineal secretory product, has properties of both direct and indirect powerful antioxidant. The aim of the present study was to compare the radical-scavenging, structural and electronic properties of melatonin and tryptophan, precursor of melatonin. Using the alkoxyl- and peroxyl radical-generating systems [the organic peroxide-treated human erythrocytes and a cell-free system containing the azo-initiator 2,2'-azobis(2-amidinopropane)dihydrochloride], we evaluated the radical-scavenging effects of melatonin and tryptophan. Melatonin rather than tryptophan at concentrations of 100-2000 microM markedly inhibited membrane lipid peroxidation in human erythrocytes treated with organic hydroperoxide as well as radical-induced generation of luminol-dependent chemiluminescence. The apparent Stern-Volmer constants for inhibition of membrane lipid peroxidation by melatonin and tryptophan were estimated to be (0.23+/-0.05) x 10(4) M(-1) and (0.02+/-0.005) x 10(4) M(-1), respectively. The apparent Stern-Volmer constants for inhibition of azo-initiator-derived peroxyl radical generation by melatonin and tryptophan were determined to be (0.42+/-0.05) x 10(4) M(-1) and (0.04+/-0.01) x 10(4) M(-1), respectively. The structural and electronic properties of melatonin and its precursor, tryptophan, were determined theoretically by performing semi-empirical and ab initio calculations. The high radical-scavenging properties of melatonin may be explained by the high surface area value and high dipole moment value. From the thermodynamic standpoint, based on our calculations, N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK), was the most stable end oxidative product of melatonin.  相似文献   

15.
Mycobacterium leprae GlbO has been proposed to represent merging of both O(2) uptake/transport and scavenging of nitrogen reactive species. Peroxynitrite reacts with M. leprae GlbO(II)-NO leading to GlbO(III) via the GlbO(III)-NO species. The value of the second order rate constant for GlbO(III)-NO formation is >1x10(8)M(-1)s(-1) in the absence and presence of CO(2) (1.2x10(-3)M). The CO(2)-independent value of the first order rate constant for GlbO(III)-NO denitrosylation is (2.5+/-0.4)x10(1)s(-1). Furthermore, peroxynitrite reacts with GlbO(II)-O(2) leading to GlbO(III) via the GlbO(IV)O species. Values of the second order rate constant for GlbO(IV)O formation are (4.8+/-0.5)x10(4) and (6.3+/-0.7)x10(5)M(-1)s(-1) in the absence and presence of CO(2) (=1.2x10(-3)M), respectively. The value of the second order rate constant for the peroxynitrite-mediated GlbO(IV)O reduction (= (1.5+/-0.2)x10(4)M(-1)s(-1)) is CO(2)-independent. These data argue for a role of GlbO in the defense of M. leprae against nitrosative stress.  相似文献   

16.
The DNA region encoding the mature form of a pneumococcal murein hydrolase (LytB) was cloned and expressed in Escherichia coli. LytB was purified by affinity chromatography, and its activity was suggested to be the first identified endo-beta-N-acetylglucosaminidase of Streptococcus pneumoniae. LytB can remove a maximum of only 25% of the radioactivity from [(3)H]choline-labeled pneumococcal cell walls in in vitro assays. Inactivation of the lytB gene of wild-type strain R6 (R6B mutant) led to the formation of long chains but did not affect either total cell wall hydrolytic activity at the stationary phase of growth or development of genetic competence. Longer chains were formed when the lytB mutation was introduced into the M31 strain (M31B mutant), which harbors a complete deletion of lytA, which codes for the major autolysin. Furthermore, the use of this mutant revealed that LytB is the first nonautolytic murein hydrolase of pneumococcus. Purified LytB added to pneumococcal cultures of R6B or M31B was capable of dispersing, in a dose-dependent manner, the long chains characteristic of these mutants into diplococci or short chains, the typical morphology of R6 and M31 strains, respectively. In vitro acetylation of purified pneumococcal cell walls did not affect the activity of LytB, whereas that of the LytA amidase was drastically reduced. On the other hand, the use of a translational fusion between the gene (gfp) coding for the green fluorescent protein (GFP) and lytB supports the notion that LytB accumulates in the cell poles of either the wild-type R6, lytB mutants, or ethanolamine-containing cells (EA cells). The GFP-LytB fusion protein was also able to unchain the lytB mutants but not the EA cells. In contrast, translational fusion protein GFP-LytA preferentially bound to the equatorial regions of choline-containing cells but did not affect their average chain length. These observations suggest the existence of specific receptors for LytB that are positioned at the polar region on the pneumococcal surface, allowing localized peptidoglycan hydrolysis and separation of the daughter cells.  相似文献   

17.
A simple and direct assay method for glucose oxidase (EC 1.1.3.4) from Aspergillus niger and Penicillium amagasakiense was investigated by Fourier transform infrared spectroscopy. This enzyme catalyzed the oxidation of d-glucose at carbon 1 into d-glucono-1,5-lactone and hydrogen peroxide in phosphate buffer in deuterium oxide ((2)H(2)O). The intensity of the d-glucono-1,5-lactone band maximum at 1212 cm(-1) due to CO stretching vibration was measured as a function of time to study the kinetics of d-glucose oxidation. The extinction coefficient epsilon of d-glucono-1,5-lactone was determined to be 1.28 mM(-1)cm(-1). The initial velocity is proportional to the enzyme concentration by using glucose oxidase from both A. niger and P. amagasakiense either as cell-free extracts or as purified enzyme preparations. The kinetic constants (V(max), K(m), k(cat), and k(cat)/K(m)) determined by Lineweaver-Burk plot were 433.78+/-59.87U mg(-1) protein, 10.07+/-1.75 mM, 1095.07+/-151.19s(-1), and 108.74 s(-1)mM(-1), respectively. These data are in agreement with the results obtained by a spectrophotometric method using a linked assay based on horseradish peroxidase in aqueous media: 470.36+/-42.83U mg(-1) protein, 6.47+/-0.85 mM, 1187.77+/-108.16s(-1), and 183.58 s(-1)mM(-1) for V(max), K(m), k(cat), and k(cat)/K(m), respectively. Therefore, this spectroscopic method is highly suited to assay for glucose oxidase activity and its kinetic parameters by using either cell-free extracts or purified enzyme preparations with an additional advantage of performing a real-time measurement of glucose oxidase activity.  相似文献   

18.
cAMP-dependent protein kinase (PKA) plays a crucial role in the release of the catch state of molluskan muscles, but the nature of the enzyme in such tissues is unknown. In this paper, we report the purification of the catalytic (C) subunit of PKA from the posterior adductor muscle (PAM) of the sea mussel Mytilus galloprovincialis. It is a monomeric protein with an apparent molecular mass of 40.0+/-2.0kDa and Stoke's radius 25.1+/-0.3A. The protein kinase activity of the purified enzyme was inhibited by both isoforms of the PKA regulatory (R) subunit that we had previously characterized in the mollusk, and also by the inhibitor peptide PKI(5-24). On the other hand, the main proteins of the contractile apparatus of PAM were partially purified and their ability to be phosphorylated in vitro by purified PKA C subunit was analyzed. The results showed that twitchin, a high molecular mass protein associated with thick filaments, was the better substrate for endogenous PKA. It was rapidly phosphorylated with a stoichiometry of 3.47+/-0.24mol Pmol(-1) protein. Also, catchin, paramyosin, and actin were phosphorylated, although more slowly and to a lesser extent. On the contrary, myosin heavy chain (MHC) and tropomyosin were not phosphorylated under the conditions used.  相似文献   

19.
Dehydrodolichyl diphosphate synthase (DDPPs) catalyzes the sequential condensation of isopentenyl diphosphate with farnesyl diphosphate to synthesize long-chain dehydrodolichyl diphosphate, which serves as a precursor of glycosyl carrier in glycoprotein biosynthesis in eukaryotes. To perform kinetic and structural studies of DDPPs, we have expressed yeast DDPPs using Escherichia coli as the host cell. Thioredoxin and His tag were utilized to increase the solubility of the recombinant protein and facilitate its purification using Ni-nitrilotriacetic acid (NTA) column. The protein was overexpressed in E. coli but mostly existed in pellet in the absence of detergent. The low quantity of soluble DDPPs was purified using Ni-NTA, Mono Q anion-exchange, and size-column chromatographies. The protein in the pellet was solubilized with 7 M urea and purified using Ni-NTA under denaturing condition. The protein refolding was achieved via the stepwise dialysis to remove the denaturant in the presence of 6 mM beta-mercaptoethanol. Detergent n-octyl-beta-d-glucopyranoside and Triton X-100 increased the solubility of the DDPPs so that refolding can be performed at higher protein concentration. Alternatively, on-column refolding was carried out in a single step to obtain the active protein in large quantities. beta-Mercaptoethanol and Triton were both required in this quick refolding process. The kinetic studies indicated that the soluble and refolded DDPPs have comparable activities (k(cat) = 2 x 10(-4) s(-1)). Unlike its bacterial homologue, undecaprenyl diphosphate synthase, yeast DDPPs activity was not enhanced by Triton.  相似文献   

20.
Human endothelial nitric-oxide synthase (eNOS) was expressed in the methylotrophic yeast Pichia pastoris, making use of the highly inducible alcohol oxidase promoter. The recombinant protein constituted approximately 3% of total protein and was largely soluble (>75%). About 1 mg of purified eNOS was obtained from 100-ml yeast cell cultures by affinity chromatography of crude cell supernatants. The purified enzyme had a V(max) of 192 +/- 18 nmol of L-citrulline x mg(-1) x min(-1), had a K(m) for L-arginine of 3.9 +/- 0.2 microM, and showed an absolute requirement for tetrahydrobiopterin (H(4)biopterin). NADPH oxidase activity was 136 +/- 9 and 342 +/- 24 nmol x mg(-1) x min(-1) in the absence and presence of 0.1 mM L-arginine, respectively, and not affected by H(4)biopterin. The protein contained 0.56 +/- 0.06 equivalents of FAD and 0.79 +/- 0.08 equivalents of FMN. On-line gel filtration/inductively coupled plasma mass spectrometry analysis confirmed that both iron (0.80 +/- 0.09 mol/subunit) and zinc (0.43 +/- 0.03 mol/subunit) were bound to the enzyme. Graphite furnace-atomic absorption spectroscopy yielded a value for bound iron of 0.84 +/- 0.04 mol/subunit. The absorbance of the enzyme at 398 nm implied a heme content of 0.85 +/- 0.09 mol/subunit, and the high pressure liquid chromatography heme assay gave an estimate of 0.71 +/- 0.02 mol heme/subunit. Gel permeation chromatography yielded one single peak with a Stokes radius of 6.62 +/- 0.7 nm, indicating that the native protein is dimeric. Upon low temperature gel electrophoresis the untreated protein appeared mainly as a monomer (88 +/- 3%), but pretreatment with H(4)biopterin and L-arginine led to a pronounced shift toward dimers (77 +/- 4%). Thus, in contrast to bovine eNOS (List, B. M., Kl?sch, B., V?lker, C., Gorren, A. C. F., Sessa, W. C., Werner, E. R., Kukovetz, W. R., Schmidt, K., and Mayer, B. (1997) Biochem. J. 323, 159-165; Rodriguez-Crespo, I., Gerber, N. C., and Ortiz de Montellano, P. R. (1996) J. Biol. Chem. 271, 11462-11467), the human eNOS appears to be markedly stabilized by H(4)biopterin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号