首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The secretory organelles of Plasmodium knowlesi were studied ultrastructurally to examine their mode of action during invasion. The formation of lamellar structures in merozoite rhoptries within late stage schizonts is prevented by the protease inhibitors chymostatin and leupeptin. Under normal conditions vesicles lined by 6-nm membranes are formed in rhoptries during erythrocyte invasion. Stereoscopic viewing of tilted sections shows that where the merozoite apex contacts the parasitophorous vacuole (PV) membrane during invasion, a domed elevation of the PV surface lies within the mouth of the rhoptry duct in contact with the secretory matrix. The membrane of the early invasion pit is thinner (6 nm) than the red cell membrane elsewhere, and sheets of lamellar material are frequently present on the invasion pit surface. These findings support the proposal that the rhoptry-microneme complex is capable of generating membranous material and inserting it into the red cell surface in a controlled manner to create the parasitophorous vacuole. On the basis of this model, measurements from serial sections show that the rhoptries could provide enough material to create a membrane lining the parasitophorous vacuole, and, with the contribution of the microspheres, could double it to accommodate the early ring stage of the parasite.  相似文献   

2.
Endopeptidases from Plasmodium knowlesi   总被引:3,自引:0,他引:3  
Extracts of rhesus monkey erythrocytes infected with Plasmodium knowlesi were fractionated by polyacrylamide gel electrophoresis (PAGE) and several zones of endopeptidase activity were demonstrated by an imprint-digest method. The enzymes were active only under acid conditions; activity was detected at pH 3.2 but not between pH 6.4 and 8.9 using haemoglobin, albumin or erythrocyte lysate as the substrate. Optimized PAGE conditions separated highly active parasite enzymes with Rf values of 73, 63 and 53 (+/- 7%), as well as a red cell endopeptidase, Rf44. Of two other minor bands of activity, one was associated with platelets.  相似文献   

3.
4.
5.
6.

Background

Antibodies targeting merozoites are important in protection from malaria. Therefore, merozoite surface proteins are attractive vaccine candidates. There is a need for robust functional assays to investigate mechanisms of acquired immunity and vaccine efficacy. To date, the study of merozoite phagocytosis has been confounded by the complexity and variability of in vitro assays.

Methodology/Principal findings

We have developed a new flow cytometry-based merozoite phagocytosis assay. An optimized merozoite preparation technique produced high yields of merozoites separated from haemozoin. Phagocytosis by the undifferentiated THP-1 monocytic cell line was mediated only by Fc Receptors, and was therefore ideal for studying opsonising antibody responses. The assay showed robust phagocytosis with highly diluted immune sera and strong inter-assay correlation. The assay effectively measured differences in opsonisation-dependent phagocytosis among individuals.

Conclusions/Significance

This highly reproducible assay has potential applications in assessing the role of opsonic phagocytosis in naturally acquired immunity and vaccine trials.  相似文献   

7.
SYNOPSIS. Liver biopsies of white rates infected by Plasmodium berghei sporozoites were examined by electron microscopy. Intrahepatocytic schizont development was confirmed. In addition, at 60 and 70 h after sporozoite inoculation, exoerythrocytic merozoites were noted in Kupffer cells of liver sinusoids. Although it is theoretically possible that this observation may be of merozoite development in Kupffer cells, the authors suspect that this example of phagocytosis would be one of the host's natural defenses against sporozoite-transmitted malaria.  相似文献   

8.
The simian malaria Plasmodium knowlesi provides many favourable features as an experimental model; it can be grown in vivo or in vitro. Parasites of defined variant specificity and stage of development are readily obtained and both the natural host and a highly susceptible host are available for experimental infection and vaccination trials. Proteins synthesized by erythrocytic P. knowlesi parasites are characteristic of the developmental stage, as are the alterations that the parasite induces in the red cell surface. Erythrocytic merozoites are anatomically and biochemically complex, their surface alone is covered by at least eight distinct polypeptides. Immune serum from merozoite-immunized rhesus recognizes many parasite components, especially those synthesized by schizonts. All of the merozoite surface components and some of the schizont-infected red cell surface antigens are recognized by such immune sera. Rhesus monkeys rendered immune by repeated infection may by contrast recognize comparatively few antigens; a positive correlation was established for these 'naturally' immunized monkeys between protection and antibody directed against a 74 000 molecular mass antigen. Immunization with this purified antigen confers partial protection. Other putative protective antigens have been identified by monoclonal antibodies that inhibit merozoite invasion of red cells in vitro. The antigens recognized by inhibitory monoclonal antibodies are synthesized exclusively by schizonts and are processed, at the time of schizont rupture and merozoite release, to smaller molecules that are present on the merozoite surface. The multiplicity of protective antigens is clearly demonstrated by the fact that seven distinct merozoite surface antigens are recognized by three different inhibitory monoclonals. None of the protective antigens identified are variant or strain specific.  相似文献   

9.
10.
ABSTRACT. Late schizonts from continuous cultures of P. falciparum were concentrated over Percoll, inoculated to various experimental media at the rate of about 20 × 106 per 0.5 ml of medium, and incubated in a candle jar at 37° for 1 day. Controls in standard culture medium showed a heavy invasion with young rings in the previously uninfected red cells introduced with the inoculum of schizonts. In a medium of high potassium content containing a 33% extract of human erythrocytes, this invasion was inhibited and many free merozoites were present. If, however, this same medium was supplemented with both ATP, as the dipotassium salt at 1.6 mM, and sodium pyruvate at 3.6 mM, there appeared large numbers of extracellular forms resembling young rings. Examination of these by electron microscopy shows that they are indeed merozoites that have begun to differentiate extracellularly. This suggests that the trigger for differentiation of merozoites may not depend on the process of entry into a red cell but rather on specific factors within the red cell.  相似文献   

11.
12.
13.
Lipidic vacuoles in Plasmodium knowlesi erythrocytic schizonts   总被引:2,自引:0,他引:2  
Electron microscopy of schizont development in erythrocytic Plasmodium knowlesi has revealed that spheroidal vacuoles 250 nm in diameter with semi-dense contents appear at the periphery of the parasite prior to the budding of merozoites. When treated with non-polar solvents, their contents are completely extracted, and after fixation in tannic-glutaraldehyde they contain regular lamellae with a periodicity of 5.5 nm. Both of these reactions are typical of lipids. Some of these structures are associated with phagosomal vacuoles which may contribute to their lamellae. They disappear at the onset of merozoite formation, but membranous whorls of various sizes continue to be associated with the schizont surface during budding of merozoites. It is suggested that the lipidic vacuoles are a source of preformed lipid which can be utilized rapidly during the generation of merozoites.  相似文献   

14.
ABSTRACT. Electron microscopy of schizont development in erythrocytic Plasmodium knowlesi has revealed that spheroidal vacuoles 250 nm in diameter with semi-dense contents appear at the periphery of the parasite prior to the budding of merozoites. When treated with non-polar solvents, their contents are completely extracted, and after fixation in tannic-glutaraldehyde they contain regular lamellae with a periodicity of 5.5 nm. Both of these reactions are typical of lipids. Some of these structures are associated with phagosomal vacuoles which may contribute to their lamellae. They disappear at the onset of merozoite formation, but membranous whorls of various sizes continue to be associated with the schizont surface during budding of merozoites. It is suggested that the lipidic vacuoles are a source of preformed lipid which can be utilized rapidly during the generation of merozoites.  相似文献   

15.
Phospholipid uptake by Plasmodium knowlesi infected erythrocytes   总被引:2,自引:0,他引:2  
The uptake of phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS) in Plasmodium knowlesi infected erythrocytes has been studied. Whereas uptake of phospholipids, in the absence of phospholipid transfer proteins, is negligible in control cells, the infected cells can incorporate considerable amounts of added phospholipids. The uptake is enhanced by the presence of lipid transfer proteins. Doubly labeled [3H]oleate, [14C]choline) PC does not undergo any appreciable remodelling following uptake, which strongly suggests that plasma PC is used as such for the biogenesis of the parasite membranes. Transport of extracellularly offered PS and PE towards the intraerythrocytic parasite and utilization of these lipids by the parasite are confirmed by the observation that these lipids are converted into respectively PE and PC. The extent and rate of these conversions depend on the way the phospholipids are introduced into the infected cells.  相似文献   

16.
17.
18.
19.
The preferential invasion of particular red blood cell (RBC) age classes may offer a mechanism by which certain species of Plasmodia regulate their population growth. Asexual reproduction of the parasite within RBCs exponentially increases the number of circulating parasites; limiting this explosion in parasite density may be key to providing sufficient time for the parasite to reproduce, and for the host to develop a specific immune response. It is critical that the role of preferential invasion in infection is properly understood to model the within-host dynamics of different Plasmodia species. We develop a simulation model to show that limiting the range of RBC age classes available for invasion is a credible mechanism for restricting parasite density, one which is equally as important as the maximum parasite replication rate and the duration of the erythrocytic cycle. Different species of Plasmodia that regularly infect humans exhibit different preferences for RBC invasion, with all species except P. falciparum appearing to exhibit a combination of characteristics which are able to self-regulate parasite density.  相似文献   

20.
Nevskaya  N. A.  Nikonov  O. S.  Revtovich  S. V.  Garber  M. B.  Nikonov  S. V. 《Molecular Biology》2004,38(5):789-798
Specific binding of ribosomal proteins to rRNA has been analyzed, and the method for determining the recognizing modules on the protein surface has been proposed. This method is based on the search for the atoms on the protein molecule that are involved in the conserved hydrogen bonds with rRNA and form invariant spatial structure in both free and RNA-bound ribosomal proteins. The potential of this method is illustrated by determining the rRNA-recognizing modules on the surface of ribosomal proteins S8, S15, and L5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号