首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Actin filaments and myosin II are evolutionarily conserved force-generating components of the contractile ring during cytokinesis. Here we show that in budding yeast, actin filament depolymerization plays a major role in actomyosin ring constriction. Cofilin mutation or chemically stabilizing actin filaments attenuate actomyosin ring constriction. Deletion of myosin II motor domain or the myosin regulatory light chain reduced the contraction rate and also the rate of actin depolymerization in the ring. We constructed a quantitative microscopic model of actomyosin ring constriction via filament sliding driven by both actin depolymerization and myosin II motor activity. Model simulations based on experimental measurements support the notion that actin depolymerization is the predominant mechanism for ring constriction. The model predicts invariability of total contraction time regardless of the initial ring size, as originally reported for C. elegans embryonic cells. This prediction was validated in yeast cells of different sizes due to different ploidies.  相似文献   

2.
Cytokinesis requires the coordination of many cellular complexes, particularly those involved in the constriction and reconstruction of the plasma membrane in the cleavage furrow. We have investigated the regulation and function of vesicle transport and fusion during cytokinesis in budding yeast. By using time-lapse confocal microscopy, we show that post-Golgi vesicles, as well as the exocyst, a complex required for the tethering and fusion of these vesicles, localize to the bud neck at a precise time just before spindle disassembly and actomyosin ring contraction. Using mutants affecting cyclin degradation and the mitotic exit network, we found that targeted secretion, in contrast to contractile ring activation, requires cyclin degradation but not the mitotic exit network. Analysis of cells in late anaphase bearing exocyst and myosin V mutations show that both vesicle transport and fusion machineries are required for the completion of cytokinesis, but this is not due to a delay in mitotic exit or assembly of the contractile ring. Further investigation of the dynamics of contractile rings in exocyst mutants shows these cells may be able to initiate contraction but often fail to complete the contraction due to premature disassembly during the contraction phase. This phenotype led us to identify Chs2, a transmembrane protein targeted to the bud neck through the exocytic pathway, as necessary for actomyosin ring stability during contraction. Chs2, as the chitin synthase that produces the primary septum, thus couples the assembly of the extracellular matrix with the dynamics of the contractile ring during cytokinesis.  相似文献   

3.
Ring canals, also known as stable intercellular bridges, are derived from the contractile rings of incomplete cytokinesis (IC) in most organisms. Formation of ring canals is necessary to generate functional eggs and sperm in multiple organisms including insects, birds, mammals and various plants. How the constriction of a contractile ring is arrested and how an arrested contractile ring is transformed into a ring canal is unknown. We describe here the function of the Drosophila melanogaster myosin binding subunit of myosin phosphatase (DMYPT) in both processes. We have found that DMYPT is highly enriched in the cytoplasm of cells undergoing IC during oogenesis. DMYPT mutations in germ cells, but not in somatic follicle cells, resulted in over-constriction of contractile rings and ring canals. This leads to formation of small ring canals and mis-regulation of centriole migration during female germline cyst formation. Our results suggest that there may be two parallel mechanisms to prevent the contractile rings from being completely closed, physical resistance and inhibition of myosin II activity via DMYPT.  相似文献   

4.
The contractile ring is a remarkable tension-generating cellular machine that constricts and divides cells into two during cytokinesis, the final stage of the cell cycle. Since the ring’s discovery, the parallels with muscle have been emphasized. Both are contractile actomyosin machineries, and long ago, a muscle-like sliding filament mechanism was proposed for the ring. This review focuses on the mechanisms that generate ring tension and constrict contractile rings. The emphasis is on fission yeast, whose contractile ring is sufficiently well characterized that realistic mathematical models are feasible, and possible lessons from fission yeast that may apply to animal cells are discussed. Recent discoveries relevant to the organization in fission yeast rings suggest a stochastic steady-state version of the classic sliding filament mechanism for tension. The importance of different modes of anchoring for tension production and for organizational stability of constricting rings is discussed. Possible mechanisms are discussed that set the constriction rate and enable the contractile ring to meet the technical challenge of maintaining structural integrity and tension-generating capacity while continuously disassembling throughout constriction.  相似文献   

5.
The molecular organization of cytokinesis proteins governs contractile ring function. We used single molecule localization microscopy in live cells to elucidate the molecular organization of cytokinesis proteins and relate it to the constriction rate of the contractile ring. Wild-type fission yeast cells assemble contractile rings by the coalescence of cortical proteins complexes called nodes whereas cells without Anillin/Mid1p (Δmid1) lack visible nodes yet assemble contractile rings competent for constriction from the looping of strands. We leveraged the Δmid1 contractile ring assembly mechanism to determine how two distinct molecular organizations, nodes versus strands, can yield functional contractile rings. Contrary to previous interpretations, nodes assemble in Δmid1 cells. Our results suggest that Myo2p heads condense upon interaction with actin filaments and an excess number of Myo2p heads bound to actin filaments hinders constriction thus reducing the constriction rate. Our work establishes a predictive correlation between the molecular organization of nodes and the behavior of the contractile ring.  相似文献   

6.
Paxillins are a family of conserved LIM domain-containing proteins that play important roles in the function and integrity of the actin cytoskeleton. Although paxillins have been extensively characterized by cell biological and biochemical approaches, genetic studies are relatively scarce. Here, we identify and characterize a paxillin-related protein Pxl1p in the fission yeast Schizosaccharomyces pombe. Pxl1p is a component of the fission yeast actomyosin ring, a structure that is essential for cytokinesis. Cells deleted for pxl1 display a novel phenotype characterized by a splitting of the actomyosin ring in late anaphase, leading to the formation of two rings of which only one undergoes constriction. In addition, the rate of actomyosin ring constriction is slower in the absence of Pxl1p. pxl1Delta mutants display strong genetic interactions with mutants defective in IQGAP-related protein Rng2p and mutants defective in components of the fission yeast type II myosin machinery. Collectively, these results suggest that Pxl1p might cooperate with type II myosin and Rng2p-IQGAP to regulate actomyosin ring constriction as well as to maintain its integrity during constriction.  相似文献   

7.
An actomyosin-based contractile ring provides the forces necessary for cell cleavage in several organisms [1-3]. Myosin II is an essential component of the actomyosin ring and has also been detected as a "spot" in interphase Schizosaccharomyces pombe cells [4-5]. It is currently unknown if this myosin II-containing spot is important for cytokinesis. In this study, we characterize this myosin II-containing spot using a combination of genetic and cell biological analyses. Whereas myosin II at the actomyosin ring undergoes rapid turnover, myosin II at the spot does not. Maintenance of the myosin II-containing spot is independent of F-actin function. Interestingly, maintenance of this myosin II spot in interphase requires the function of Rng3p, a UCS domain-containing protein, the Caenorhabditis elegans homolog of which has recently been shown to be a cochaperone for myosin II assembly [6]. Disassembly of the spot in interphase prevents actomyosin ring formation in the subsequent mitosis, implying that the spot might represent a progenitor that is important for assembly of the actomyosin ring. Given that mitosis represents a short period of the fission yeast cell cycle, organization of this progenitor structure in interphase might ensure proper assembly of the actomyosin ring and successful cell division.  相似文献   

8.
Whereas actomyosin and septin ring organization and function in cytokinesis are thoroughly described, little is known regarding the mechanisms by which the actomyosin ring interacts with septins and associated proteins to coordinate cell division. Here we show that the protein product of YPL158C, Aim44p, undergoes septin-dependent recruitment to the site of cell division. Aim44p colocalizes with Myo1p, the type II myosin of the contractile ring, throughout most of the cell cycle. The Aim44p ring does not contract when the actomyosin ring closes. Instead, it forms a double ring that associates with septin rings on mother and daughter cells after cell separation. Deletion of AIM44 results in defects in contractile ring closure. Aim44p coimmunoprecipitates with Hof1p, a conserved F-BAR protein that binds both septins and type II myosins and promotes contractile ring closure. Deletion of AIM44 results in a delay in Hof1p phosphorylation and altered Hof1p localization. Finally, overexpression of Dbf2p, a kinase that phosphorylates Hof1p and is required for relocalization of Hof1p from septin rings to the contractile ring and for Hof1p-triggered contractile ring closure, rescues the cytokinesis defect observed in aim44∆ cells. Our studies reveal a novel role for Aim44p in regulating contractile ring closure through effects on Hof1p.  相似文献   

9.
In Saccharomyces cerevisiae, the mother cell and bud are connected by a narrow neck. The mechanism by which this neck is closed during cytokinesis has been unclear. Here we report on the role of a contractile actomyosin ring in this process. Myo1p (the only type II myosin in S. cerevisiae) forms a ring at the presumptive bud site shortly before bud emergence. Myo1p ring formation depends on the septins but not on F-actin, and preexisting Myo1p rings are stable when F-actin is depolymerized. The Myo1p ring remains in the mother–bud neck until the end of anaphase, when a ring of F-actin forms in association with it. The actomyosin ring then contracts to a point and disappears. In the absence of F-actin, the Myo1p ring does not contract. After ring contraction, cortical actin patches congregate at the mother–bud neck, and septum formation and cell separation rapidly ensue. Strains deleted for MYO1 are viable; they fail to form the actin ring but show apparently normal congregation of actin patches at the neck. Some myo1Δ strains divide nearly as efficiently as wild type; other myo1Δ strains divide less efficiently, but it is unclear whether the primary defect is in cytokinesis, septum formation, or cell separation. Even cells lacking F-actin can divide, although in this case division is considerably delayed. Thus, the contractile actomyosin ring is not essential for cytokinesis in S. cerevisiae. In its absence, cytokinesis can still be completed by a process (possibly localized cell–wall synthesis leading to septum formation) that appears to require septin function and to be facilitated by F-actin.  相似文献   

10.
In many eukaryotes, cytokinesis requires the assembly and constriction of an actomyosin-based contractile ring. Despite the central role of this ring in cytokinesis, the mechanism of F-actin assembly and accumulation in the ring is not fully understood. In this paper, we investigate the mechanism of F-actin assembly during cytokinesis in Schizosaccharomyces pombe using lifeact as a probe to monitor actin dynamics. Previous work has shown that F-actin in the actomyosin ring is assembled de novo at the division site. Surprisingly, we find that a significant fraction of F-actin in the ring was recruited from formin-Cdc12p nucleated long actin cables that were generated at multiple nonmedial locations and incorporated into the ring by a combination of myosin II and myosin V activities. Our results, together with findings in animal cells, suggest that de novo F-actin assembly at the division site and directed transport of F-actin cables assembled elsewhere can contribute to ring assembly.  相似文献   

11.
During cytokinesis, animal and fungal cells form a membrane furrow via actomyosin ring constriction. Our understanding of actomyosin ring‐driven cytokinesis stems extensively from the fission yeast model system. However, unlike animal cells, actomyosin ring constriction occurs simultaneously with septum formation in fungi. While the formation of an actomyosin ring is essential for cytokinesis in fission yeast, proper furrow formation also requires septum deposition. The molecular mechanisms of spatiotemporal coordination of septum deposition with actomyosin ring constriction are poorly understood. Although the role of the actomyosin ring as a mechanical structure driving furrow formation is better understood, its role as a spatiotemporal landmark for septum deposition is not widely discussed. Here we review and discuss the recent advances describing how the actomyosin ring spatiotemporally regulates membrane traffic to promote septum‐driven cytokinesis in fission yeast. Finally, we explore emerging questions in cytokinesis, and discuss the role of extracellular matrix during cytokinesis in other organisms.  相似文献   

12.
Polar body extrusion (PBE) is the specialized asymmetric division by which oocytes accomplish reduction in ploidy and retention of cytoplasm. During maternal gametogenesis, as in male meiosis and mitosis, cytokinesis is accomplished by a ring rich in active Rho, myosin, and formin-nucleated F-actin [1-7]. However, unlike mitosis, wherein the contractile ring encircles the cell equator, the polar body ring assembles as a discoid cortical washer. Here we show that in Caenorhabditis elegans, the meiotic contractile ring transforms during closure from a disc above the spindle to a cylinder around the spindle midzone. The meiotic midbody tube comprises stacked cytoskeletal rings. This topological transition suggests a novel mechanism for constriction of an initially discoid cytokinetic ring. Analysis of mouse PBE indicates that midbody tube formation is a conserved process. Depletion of the scaffold protein anillin (ANI-1) from C. elegans results in large and unstable polar bodies that often fuse with the oocyte. Anillin is dispensable for contractile ring assembly, initiation, and closure but is required for the meiotic contractile ring to transform from a disc into a tube. We propose that cytoskeletal bundling by anillin promotes formation of the midbody tube, which ensures the fidelity of PBE.  相似文献   

13.
The formation and contraction of a cytokinetic actomyosin ring (CAR) is essential for the execution of cytokinesis in fission yeast. Unlike most organisms in which its composition has been investigated, the fission yeast CAR contains two type II myosins encoded by the genes myo2(+) and myp2(+). myo2(+) is an essential gene whilst myp2(+) is dispensable under normal growth conditions. Myo2 is hence the major contractile protein of the CAR whilst Myp2 plays a more subtle and, as yet, incompletely documented role. Using a fission yeast strain in which the chromosomal copy of the myo2(+) gene is fused to the gene encoding green fluorescent protein (GFP), we analysed CAR formation and function in the presence and absence of Myp2. No change in the rate of CAR contraction was observed when Myp2 was absent although the CAR persisted longer in the contracted state and was occasionally observed to split into two discrete rings. This was also observed in myp2Delta cells following actin depolymerisation with latrunculin. CAR contraction in the absence of Myp2 was completely abolished in the presence of elevated levels of chloride ions. Thus, Myp2 appears to contribute to the stability of the CAR, in particular at a late stage of CAR contraction, and to be a component of the signalling pathway that regulates cytokinesis in response to elevated levels of chloride. To determine whether the presence of two type II myosins was a feature of cytokinesis in other fungi that divide by septation, we searched the genomes of two filamentous fungi, Aspergillus fumigatus and Neurospora crassa, for myosin genes. As in fission yeast, both A. fumigatus and N. crassa contained myosins of classes I, II, and V. Unlike fission yeast, both contained a single type II myosin gene that, on the basis of its tail structure, was more reminiscent of Myp2 than Myo2. The significance of these observations to our understanding of septum to formation and cleavage is discussed.  相似文献   

14.
This study focuses on the dynamic reorganization of actin and myosin ("conventional" myosin, or myosin-II) during cytokinesis in D. discoideum. This is the first study identifying the birefringence of the spindle microtubules as well as three sets of microfilamentous structure in Dictyostelium. The change of organization in these fibrillar structures was followed in real-time with video microscopy, using a Universal Polarizing Microscope equipped with polarized-light (POL) and differential interference contrast (DIC) optics combined with digital image processing. High-frequency mitotic cells were obtained by semi-synchronous culture, and high-resolution observations were made by utilizing the agar-overlay method (Yumura et al.: Journal of Cell Biology 99:894-899, 1984). The molecular identity of the birefringent structures was determined by fluorescence microscopy. Through-focus observations were performed with an axial resolution of 0.3 micron depth of field. The actomyosin fibrils show a dramatic reorganization throughout mitosis. The fibrils at the leading lamellipodia disappear, and there is a striking assembly of the cortical actomyosin in pro-metaphase, which is accompanied by a decrease in cell volume. The cortical actomyosin gradually increases through anaphase. After late anaphase, very active polar lamellipodia, with an average life of less than 1 minute, are formed. We confirmed that the polar lamellipodia include actin, but not myosin-II. At the cleavage furrow, the microfilaments form two distinctive structures: circular contractile ring at the equator, and a cortical filament array parallel to the polar axis. Myosin is localized in the contractile ring, but not associated with the axial array of F-actin. Actomyosin in the contractile ring gradually transforms into cortical network at the posterior region of daughter cells. The constriction of the furrow is accompanied by a drastic efflux of water as evidenced by highly active contractile vacuole formation and turbulent motion of minute vesicles connected to the furrow. This study demonstrates the presence of a new microfilament structure, as well as the dynamic property of the contractile ring, and sheds new light on the contractile mechanisms underlying cytokinesis.  相似文献   

15.
Cell shape changes and proliferation are two fundamental strategies for morphogenesis in animal development. During embryogenesis of the simple chordate Ciona intestinalis, elongation of individual notochord cells constitutes a crucial stage of notochord growth, which contributes to the establishment of the larval body plan. The mechanism of cell elongation is elusive. Here we show that although notochord cells do not divide, they use a cytokinesis-like actomyosin mechanism to drive cell elongation. The actomyosin network forming at the equator of each notochord cell includes phosphorylated myosin regulatory light chain, α-actinin, cofilin, tropomyosin, and talin. We demonstrate that cofilin and α-actinin are two crucial components for cell elongation. Cortical flow contributes to the assembly of the actomyosin ring. Similar to cytokinetic cells, membrane blebs that cause local contractions form at the basal cortex next to the equator and participate in force generation. We present a model in which the cooperation of equatorial actomyosin ring-based constriction and bleb-associated contractions at the basal cortex promotes cell elongation. Our results demonstrate that a cytokinesis-like contractile mechanism is co-opted in a completely different developmental scenario to achieve cell shape change instead of cell division. We discuss the occurrences of actomyosin rings aside from cell division, suggesting that circumferential contraction is an evolutionally conserved mechanism to drive cell or tissue elongation.  相似文献   

16.
In yeast, cytokinesis requires coordination between nuclear division, acto-myosin ring contraction, and septum synthesis. We studied the role of the Schizosaccharomyces pombe Bgs1p and Cfh3p proteins during cytokinesis under stress conditions. Cfh3p formed a ring in the septal area that contracted during mitosis; Cfh3p colocalized and co-immunoprecipitated with Cdc15p, showing that Cfh3p interacted with the contractile acto-myosin ring. In a wild-type strain, a significant number of contractile rings collapsed under stress conditions and this number increased dramatically in the cfh3Δ, bgs1cps1-191, and cfh3Δ bgs1/cps1-191. Our results show that after osmotic shock Cfh3p is essential for the stability of the (1,3) glucan synthase Bgs1p in the septal area, but not at the cell poles. Finally, cells adapted to stress; they repaired their contractile rings and re-localized Bgs1p to the cell surface some time after osmotic shock. A detailed analysis of the cytokinesis machinery in the presence of KCl revealed that the actomyosin ring collapsed before Bgs1p was internalized, and that it was repaired before Bgs1p re-localized to the cell surface. In the cfh3Δ, bgs1/cps1-191, and cfh3Δ bgs1/cps1-191 mutants, which have reduced glucan synthesis, the damage produced to the ring had stronger consequences, suggesting that an intact primary septum contributes to ring stability. The results show that the contractile actomyosin ring is very sensitive to stress, and that cells have efficient mechanisms to remedy the damage produced in this structure.  相似文献   

17.
In animal cells, cytokinesis occurs by constriction of an actomyosin ring. In fission yeast cells, ring constriction is triggered by the septum initiation network (SIN), an SPB-associated GTPase-regulated kinase cascade that coordinates exit from mitosis with cytokinesis. We have identified a novel protein, Etd1p, required to trigger actomyosin ring constriction in fission yeasts. This protein is localised at the cell tips during interphase. In mitosis, it relocates to the medial cortex region and, coincident with cytokinesis, it assembles into the actomyosin ring by association to Cdc15p. Relocation of Etd1p from the plasma membrane to the medial ring is triggered by SIN signalling and, reciprocally, relocation of the Sid2p-Mob1p kinase complex from the SPB to the division site, a late step in the execution of the SIN, requires Etd1p. These results suggest that Etd1p coordinates the mitotic activation of SIN with the initiation of actomyosin ring constriction. Etd1p peaks during cytokinesis and is degraded by the ubiquitin-dependent 26S-proteasome pathway at the end of septation, providing a mechanism to couple inactivation of SIN to completion of cytokinesis.  相似文献   

18.
Germline cyst formation is essential for the propagation of many organisms including humans and flies. The cytoplasm of germline cyst cells communicate with each other directly via large intercellular bridges called ring canals. Ring canals are often derived from arrested contractile rings during incomplete cytokinesis. However how ring canal formation, maintenance and growth are regulated remains unclear. To better understand this process, we carried out an unbiased genetic screen in Drosophila melanogaster germ cells and identified multiple alleles of flapwing (flw), a conserved serine/threonine-specific protein phosphatase. Flw had previously been reported to be unnecessary for early D. melanogaster oogenesis using a hypomorphic allele. We found that loss of Flw leads to over-constricted nascent ring canals and subsequently tiny mature ring canals, through which cytoplasmic transfer from nurse cells to the oocyte is impaired, resulting in small, non-functional eggs. Flw is expressed in germ cells undergoing incomplete cytokinesis, completely colocalized with the Drosophila myosin binding subunit of myosin phosphatase (DMYPT). This colocalization, together with genetic interaction studies, suggests that Flw functions together with DMYPT to negatively regulate myosin activity during ring canal formation. The identification of two subunits of the tripartite myosin phosphatase as the first two main players required for ring canal constriction indicates that tight regulation of myosin activity is essential for germline cyst formation and reproduction in D. melanogaster and probably other species as well.  相似文献   

19.
In animal and fungal cells, cytokinesis involves an actomyosin ring that forms and contracts at the division plane. Important new details have emerged concerning the composition, assembly, and dynamics of these contractile rings. In addition, recent advances suggest that targeted membrane addition is a central feature of cytokinesis in animal cells - as it is in fungi and plants - and the coordination of actomyosin ring function with targeted exocytosis at the cleavage plane is being explored. Important new information has also emerged about the spatial and temporal regulation of cytokinesis, especially in relation to the function of the spindle midzone in animal cells and the control of cytokinesis by GTPase systems.  相似文献   

20.
The cleavage furrow is created by an actomyosin contractile ring that isregulated by small GTPase proteins such as Rac1 and RhoA. Guanine nucleotideexchange factors (GEFs) are positive regulators of the small GTPase proteins andhave been implicated as important factors in regulating cytokinesis. However, it isstill unclear how GEFs regulate the contractile ring during cytokinesis inmammalian cells. Here we report that a novel GEF, which is termed MyoGEF(myosin-interacting GEF), interacts with nonmuscle myosin II and exhibits activitytoward RhoA. MyoGEF and nonmuscle myosin II colocalize to the cleavage furrowin early anaphase cells. Disruption of MyoGEF expression in U2OS cells by RNAinterference (RNAi) results in the formation of multinucleated cells. These resultssuggest that MyoGEF, RhoA, and nonmuscle myosin II act as a functional unit atthe cleavage furrow to advance furrow ingression during cytokinesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号