首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundHypoxia and HIF-1α are important regulators of tumour growth and angiogenesis and could be attractive targets for cancer therapeutics. Decursin is an active compound extracted from the roots of Angelica gigas and has been shown to have potent anti-cancer and anti-angiogenic activities. However, whether decursin regulates HIF-1α activity and immune responses under hypoxic conditions is not yet understood.PurposeThe aim of this study was to identify whether decursin exhibits anti-cancer activity by targeting HIF-1α.Study designWe investigated whether decursin regulates HIF-1α protein stability and increases its degradation. In addition, we determined if decursin increases immune responses in tumour microenvironment to identify its hypoxia-associated anti-cancer activities.Materials and methodsWe performed the hypoxia-responsive element promoter–reporter assay, Western blot analysis, immune-fluorescence assay, semi-quantitative RT-PCR and ELISA for VEGF secretion, CCK-8 assay for cell proliferation, TUNEL assay for apoptosis and invasion assay in A549 human lung cancer or HCT116 human colon cancer cells. In vivo Lewis lung carcinoma (LLC) allograft mouse model was used to check tumour growth and immune responses in tumour microenvironment by immunohistochemistry analysis.ResultsWe observed that decursin inhibited HIF-1 activation under hypoxia by down-regulating the protein level of its subunit HIF-1α. It increased oxygen-dependant hydroxylation and ubiquitination of HIF-1α to promote HIF-1α degradation. Decursin also decreased mRNA expression of HIF-1α target genes. Decursin suppressed cancer cell proliferation, induced apoptosis and inhibited cancer cell invasion under hypoxia in cancer cells. In the allograft mouse tumour model, decursin reduced the hypoxic area and HIF-1α and PD-L1 expression. Infiltrating T cells (CD3+), helper T cells (CD4+) and cytotoxic (CD8+) T cells were accumulated, but regulatory T cells (Foxp3) and myeloid-derived suppressor cell-mediated immune suppressors (Arg1) were attenuated by decursin.ConclusionOur results suggest that decursin is a novel HIF-1α inhibitor that functions by promoting its proteasomal degradation and that it also helps improve T cell activation in tumour microenvironment; these findings provide new explanations about its anti-cancer and anti-angiogenic activity mechanisms.  相似文献   

2.
Endothelial progenitor cells (EPCs) contribute to the tumor vasculature during tumor progression. Decursin isolated from the herb Angelica gigas is known to possess potent anti‐inflammatory activities. Recently, we reported that decursin is a novel candidate for an angiogenesis inhibitor [Jung et al., 2009 ]. In this study, we investigated whether decursin regulates EPC differentiation and function to inhibit tumor vasculogenesis. We isolated AC133+ cells from human cord blood and decursin significantly decreased the number of EPC colony forming units of human cord blood‐derived AC133+ cells that produce functional EPC progenies. Decursin dose‐dependently decreased the cell number of EPC committing cells as demonstrated by EPC expansion studies. Decursin inhibited EPC differentiation from progenitor cells into spindle‐shaped EPC colonies. Additionally, decursin inhibited proliferation and migration of early EPCs isolated from mouse bone marrow. Furthermore, decursin suppressed expression of angiopoietin‐2, angiopoietin receptor Tie‐2, Flk‐1 (vascular endothelial growth factor receptor‐2), and endothelial nitric oxide synthase in mouse BM derived EPCs in a dose‐dependent manner. Decursin suppressed tube formation ability of EPCs in collaboration with HUVEC. Decursin (4 mg/kg) inhibited tumor‐induced mobilization of circulating EPCs (CD34 + /VEGFR‐2+ cells) from bone marrow and early incorporation of Dil‐Ac‐LDL‐labeled or green fluorescent protein (GFP)+ EPCs into neovessels of xenograft Lewis lung carcinoma tumors in wild‐type‐ or bone‐marrow‐transplanted mice. Accordingly, decursin attenuated EPC‐derived endothelial cells in neovessels of Lewis lung carcinoma tumor masses grown in mice. Together, decursin likely affects EPC differentiation and function, thereby inhibiting tumor vasculogenesis in early tumorigenesis. J. Cell. Biochem. 113: 1478–1487, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

3.

Aims

We studied that a potent antifibrotic effect of decursin on in vivo liver damage model and the mechanism in inhibiting which transforming growth factor (TGF)-β1-induced human hepatic stellate cells (HSCs) activation.

Main methods

Liver injury was induced in vivo by intraperitoneal injection of carbon tetrachloride (CCl4) with or without decursin for 4 weeks in mice. Human hepatic stellate cell line, an immortalized human HSC line, was used in in vitro assay system. The effects of decursin on HSC activation were measured by analyzing the expression of α-smooth muscle actin (α-SMA) and collagen I in liver tissue and human HSCs.

Key findings

Decursin treatment significantly reduced the ratio of liver/body weight, α-SMA activation, and type I collagen overexpression in CCl4 treated mice liver. The elevated serum levels, including ALT, AST, and ALP, were also decreased by decursin treatment. Treatment of decursin markedly proved the generation of reactive oxygen species, NAD(P)H oxidase (NOX) protein (1, 2, and 4) upregulation, NOX activity, and superoxide anion production in HSCs by TGF-β1. It also significantly reduced TGF-β1-induced Smad 2/3 phosphorylation, nuclear translocation of Smad 4, and association of Smad 2/3–Smad 4 complex. Consistent with in vitro results, decursin treatment effectively blocked the levels of NOX protein, and Smad 2/3 phosphorylation in injured mice liver.

Significance

Decursin blocked CCl4-induced liver fibrosis and inhibited TGF-β1-mediated HSC activation in vitro. These data demonstrated that decursin exhibited hepatoprotective effects on experimental fibrosis, potentially by inhibiting the TGF-β1 induced NOX activation and Smad signaling.  相似文献   

4.
The anti-angiogenic activity of AGM-1470, a new synthetic analog of fumagillin isolated from Aspergillus fumigatus, was extensively examined both in vitro and in vivo using four different types of assay and compared to that of the fumagillin parent. Locally administered AGM-1470 inhibited the angiogenesis in the chick embryo chorioallantoic membrane assay and the rat corneal assay. In the rat sponge implantation assay, systemically administered AGM-1470 inhibited angiogenesis induced by basic fibroblast growth factor. Furthermore, in the rat blood vessel organ culture assay, AGM-1470 (1-1,000 ng/ml) was found to selectively inhibit the capillary-like tube formation of endothelial cells with a minimal effect on the non-endothelial cell growth. AGM-1470 showed more potent anti-angiogenic activity and less toxicity than the fumagillin parent. Therefore, AGM-1470 is much better than the fumagillin parent as anti-angiogenic compound.  相似文献   

5.
Curcumin and some of its derivatives were known as in vivo inhibitors of angiogenesis. In present study, a novel curcumin derivative, named hydrazinocurcumin (HC) was synthesized and examined for its biological activities. HC potently inhibited the proliferation of bovine aortic endothelial cells (BAECs) at a nanomolar concentration (IC(50)=520 nM) without cytotoxicity. In vivo and in vitro angiogenesis experiments showed HC as a new candidate for anti-angiogenic agent.  相似文献   

6.
Curcumin and some of its derivatives were known as in vivo inhibitors of angiogenesis. In present study, a novel curcumin derivative, named hydrazinocurcumin (HC) was synthesized and examined for its biological activities. HC potently inhibited the proliferation of bovine aortic endothelial cells (BAECs) at a nanomolar concentration (IC(50)=520 nM) without cytotoxicity. In vivo and in vitro angiogenesis experiments showed HC as a new candidate for anti-angiogenic agent.  相似文献   

7.
Decursin and related coumarin compounds in herbal extracts have a number of biological activities against inflammation, angiogenesis and cancer. We have analysed a derivative of decursin (CSL-32) for activity against inflammatory activation of cancer cells, such as migration, invasion and expression of pro-inflammatory mediators. The human fibrosarcoma cell line, HT1080, was treated with TNFα (tumour necrosis factor α) in the presence or absence of CSL-32. The cellular responses and modification of signalling adapters were analysed with respect to the production of pro-inflammatory mediators, as also migration, adhesion and invasion. Treatment of HT1080 cells with CSL-32 inhibited their proliferation, without affecting cell viability, and TNFα-induced expression of pro-inflammatory mediators, such as MMP-9 (matrix metalloproteinase-9) and IL-8 (interleukin-8). CSL-32 also suppressed phosphorylation and degradation of IκB (inhibitory κB), phosphorylation of p65 subunit of NF-κB (nuclear factor-κB) and nuclear translocation of NF-κB, which are required for the expression of pro-inflammatory mediators. In addition, CSL-32 inhibited invasion and migration of HT1080 cells, as also cellular adhesion to fibronectin, an ECM (extracellular matrix) protein. CSL-32 treatment resulted in a dose-dependent inhibition of PI3K (phosphoinositide 3-kinase) activity, required for the cellular migration. The analyses show that CSL-32 inhibits processes associated with inflammation, such as the production of pro-inflammatory mediators, as well as adhesion, migration and invasion in HT1080 cells.  相似文献   

8.
The efficient inhibition of angiogenesis is considered as a promising strategy for the treatment of angiogenesis-related diseases including cancer. Herein, we report that embellistatin, a bicyclic ketone compound known as a microtubule polymerization inhibitor, exhibits anti-angiogenic activity. Embellistatin inhibited in vitro angiogenesis of bovine aortic endothelial cells (BAECs) such as bFGF-induced invasion and tube formation as well as bFGF-induced mouse corneal angiogenesis in vivo. Notably, embellistatin exhibited stronger inhibition activity for the growth of BAECs than that of normal and cancer cell lines. Cell cycle analysis revealed that the compound arrests cell cycle at G2/M phase, which is associated with the increased expression of p21(WAF1) and p53 partly. These results demonstrate that embellistatin may serve the basis for the development of new anti-angiogenic agents.  相似文献   

9.
Cotton, a staple fiber that grows around the seeds of the cotton plants (Gossypium), is produced throughout the world, and its by products, such as cotton fibers, cotton-seed oil, and cottonseed proteins, have a variety of applications. Cotton-seed contains gossypol, a natural phenol compound. (±)-Gossypol is a yellowish polyphenol that is derived from different parts of the cotton plant and contains potent anticancer properties. Tumor growth and metastasis are mainly related to angiogenesis; therefore, anti-angiogenic therapy targets the new blood vessels that provide oxygen and nutrients to actively proliferating tumor cells. The aim of the present study was to evaluate the anti-angiogenic potential of (±)-gossypol in vitro. (±)-Gossypol has anti-proliferative effects on cancer cell lines; however, its anti-angiogenic effects on normal cells have not been studied. Anti-proliferative activities of gossypol assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, anti-angiogenic activities using tube formation assay, and cell migration inhibition capability using a wound-healing assay on human umbilical vein endothelial cells (HUVECs) were revealed. (±)-Gossypol displayed the following potent anti-angiogenic activities in vitro: it inhibited the cell viability of HUVECs, it inhibited the migration of HUVECs, and disrupted endothelial tube formation in a dose-dependent manner. In addition, the anti-angiogenic effects of (±)-gossypol were investigated in ovo in a model using a chick chorioallantoic membrane (CAM). Decreases in capillary density were assessed and scored. (±)-Gossypol showed dose-dependent anti-angiogenic effects on CAM. These findings suggest that (±)-gossypol can be used as a new anti-angiogenic agent.  相似文献   

10.
The anti-angiogenic activity of (+)-catechin as well as its regulatory effect on the production of nitric oxide and TNFalpha were studied using in vivo and in vitro models. In vivo angiogenic activity was studied using B16F-10 melanoma cell-induced capillary formation in C57BL/6 mice. Administration of (+)-catechin significantly inhibited (36.09%) the number of tumour-directed capillaries induced by injecting B16F-10 melanoma cells on the ventral side of C57BL/6 mice. The cytokine profile in the serum of these animals showed a drastically increased level of proinflammatory cytokines such as IL-1 beta, IL-6, TNF-alpha, GM-CSF and the direct endothelial cell proliferating agent, VEGF. Administration of (+)-catechin could differentially regulate elevation of these cytokines. The differential elevation is further evidenced by the increased production of IL-2 and tissue inhibitor of metalloproteinase-1 (TIMP-1) in the B16F-10 injected, (+)-catechin-treated animals. In vitro L929 bioassay revealed the inhibition of TNF-alpha production by (+)-catechin treatment. In the rat aortic ring assay, (+)-catechin inhibited the microvessel outgrowth at non-toxic concentrations. (+)-Catechin at non-toxic concentrations (5-25 microg/ml) showed significant inhibition in the proliferation, migration and tube formation of endothelial cells, which are the key events in the process of angiogenesis. (+)-Catechin also showed inhibitory effect on VEGF mRNA levels in B16F-10 melanoma cells. (+)-Catechin inhibited the production of NO and TNF-alpha in LPS-stimulated primary macrophages. Taken together, these results demonstrate that (+)-catechin inhibits tumour-specific angiogenesis by regulating the production of pro- and anti-angiogenic factors such as pro-inflammatory cytokines, nitric oxide, VEGF, IL-2 and TIMP-1. These results also suggest that (+)-catechin could significantly inhibit nitrite and TNF-alpha production in LPS-stimulated macrophages.  相似文献   

11.
The contribution of polymorphonuclear neutrophils (PMN) to host defense and natural immunity extends well beyond their traditional role as professional phagocytes. In this study, we demonstrate that upon stimulation with proinflammatory stimuli, human PMN release enzymatic activities that, in vitro, generate bioactive angiostatin fragments from purified plasminogen. We also provide evidence that these angiostatin-like fragments, comprising kringle domain 1 to kringle domain 3 (kringle 1-3) of plasminogen, are generated as a byproduct of the selective proteolytic activity of neutrophil-secreted elastase. Remarkably, affinity-purified angiostatin kringle 1-3 fragments generated by neutrophils inhibited basic fibroblast growth factor plus vascular endothelial growth factor-induced endothelial cell proliferation in vitro, and both vascular endothelial growth factor-induced angiogenesis in the matrigel plug assay and fibroblast growth factor-induced angiogenesis in the chick embryo chorioallantoic membrane assay, in vivo. These results represent the first demonstration that biologically active angiostatin-like fragments can be generated by inflammatory human neutrophils. Because angiostatin is a potent inhibitor of angiogenesis, tumor growth, and metastasis, the data suggest that activated PMN not only act as potent effectors of inflammation, but might also play a critical role in the inhibition of angiogenesis in inflammatory diseases and tumors, by generation of a potent anti-angiogenic molecule.  相似文献   

12.
We describe here the synthesis and the anti-angiogenic and anti-rheumatic activities of 4-(3,4,5-trimethoxyphenyl)-6-(2,4,5-trimethoxyphenyl)-2-diethylaminopyrimidine (TAS-202), a derivative of magnosalin, which is a natural product isolated from Flos magnoliae. TAS-202 inhibited the proliferation of vascular endothelial cells more potently than magnosalin, and when given orally it inhibited basic fibroblast growth factor (bFGF)-induced angiogenesis and collagen-induced arthritis in mice. This magnosalin derivative with anti-angiogenic effects is a candidate for the treatment of rheumatoid arthritis.  相似文献   

13.
The fungus Shiraia bambusicola yields the phytochemical 11,11'-dideoxyverticillin, which has been shown to possess potent anticancer activity both in vitro and in vivo. In this study, we reveal that 11,11'-dideoxyverticillin has anti-angiogenic activities and explore the potential mechanisms for this effect. Treatment with 11,11'-dideoxyverticillin inhibited the proliferation of human umbilical vein endothelial cells (HUVECs) with IC(50) values of 0.17+/-0.05muM for VEGF-stimulated cells and 0.39+/-0.08muM for serum-stimulated cells. 11,11'-Dideoxyverticillin also antagonized the antiapoptotic effects of VEGF on serum-deprived HUVECs, inhibited VEGF-induced HUVEC migration in vitro, and blocked serum-induced HUVEC tube formation. Moreover, 11,11'-dideoxyverticillin completely blocked VEGF-induced microvessel sprouting from Matrigel-embedded rat aortic rings and vessel growth in Matrigel plugs in mice. In addition, 11,11'-dideoxyverticillin decreased VEGF secretion by MDA-MB-468 breast cancer cells, and significantly suppressed VEGF-induced tyrosine phosphorylation of Flt-1 and KDR/Flk-1. This inhibition of receptor phosphorylation was correlated with a marked decrease in VEGF-triggered pERK activation and a dramatic increase in pP38 MAPK, but no apparent change in pAkt. Together, these findings strongly suggest that 11,11'-dideoxyverticillin is a structurally novel angiogenesis inhibitor.  相似文献   

14.
Anti-angiogenesis is regarded as an effective strategy for cancer treatment, and vascular endothelial growth factor (VEGF) plays a key role in the regulations of angiogenesis and vasculogenesis. In the present study, the authors synthesized five novel nicotinamide derivatives which structurally mimic the receptor tyrosine kinase inhibitor sunitinib and evaluated their anti-angiogenic effects. Transwell migration assays revealed that 2-(1-benzylpiperidin-4-yl) amino-N-(3-chlorophenyl) nicotinamide (BRN-103), among the five derivatives most potently inhibited VEGF-induced human umbilical vein endothelial cells (HUVECs). In addition, BRN-103 dose-dependently inhibited VEGF-induced migration, proliferation, and capillary-like tube formation of HUVECs and vessel sprouting from mouse aortic rings. To understand the molecular mechanisms responsible for these activities, the authors examined the effect of BRN-103 on VEGF signaling pathways in HUVECs. BRN-103 was found to suppress the VEGF-induced phosphorylation of VEGF receptor 2 (VEGR2) and the activations of AKT and eNOS. Taken together, these results suggest that BRN-103 inhibits VEGF-mediated angiogenesis signaling in human endothelial cells.  相似文献   

15.
Punarnavine, a quinolizidine alkaloid isolated from Boerhaavia diffusa is known to possess analgesic, anti-inflammatory, hepato-protective, immunomodulatory and anti-proliferative properties. However, its roles in tumor angiogenesis and the involved molecular mechanism are still unknown. Therefore, we examined its anti-angiogenic effects and mechanisms in vitro and in vivo. We examined the effect of punarnavine on VEGF-A expression by RT-PCR, Western blotting and ELISA. In vivo antiangiogenic activity was determined using sponge implant angiogenesis assay and antitumor activity was evaluated against Ehrlich ascites carcinoma tumor. Punarnavine significantly inhibited endothelial cell migration and invasion and capillary structure formation of HUVECs. Punarnavine significantly at 50 μM inhibited MMP-2 and MMP-9 expression in HUVECs in vitro. Punarnavine inhibited neovascularization in sponge implant assay. Punarnavine (15 mg/kg bw/d) treatment showed dose-dependent decrease in the ascitic fluid volume by 60.94% and tumor volume by 86.40% in Ehrlich ascites model. Reduction in peritoneal angiogenesis with punarnavine treatment suggests the anti-angiogenic activity of punarnavine. The present study sheds light on the potent anti-angiogenic of the punarnavine and can be extended further to develop therapeutic protocols for treatment of cancer.  相似文献   

16.
Platelet factor 4 (PF-4) is a CXC-chemokine with strong anti-angiogenic properties. We have shown previously that PF-4 inhibits angiogenesis by associating directly with fibroblast growth factor 2 (FGF-2), inhibiting its dimerization, and blocking FGF-2 binding to endothelial cells. We now have characterized a small peptide domain (PF-447-70) derived from the C-terminus of PF-4, which conserves anti-angiogenic effects of the parent protein. PF-447-70 inhibited internalization of 125I-FGF-2 by endothelial cells in a time-dependent manner. The peptide reduced FGF-2-stimulated cell migration to control levels in wounded monolayers of bovine capillary endothelial cells. PF-447-70 also reduced FGF-2 induced phosphorylation of MAP kinases ERK-1 and ERK-2, which are essential for migration and survival of endothelial cells. In a serum-free ex vivo angiogenesis assay, the peptide blocked microvessel outgrowth by 89%. A single amino acid substitution within PF-447-70 abolished all inhibitory activities. To simulate a real anti-angiogenic treatment situation, we administered PF-447-70 systemically to mice implanted subcutaneously with FGF-2 containing gelatin sponges with the result of sparse, scattered, and immature vessel growth. The small peptide fragment derived from the angio-inhibitory CXC-chemokine PF-4 might be used as a starting point to develop anti-angiogenic designer drugs for angiogenesis-dependent pathologies such as cancer, diabetic retinopathy, and rheumatoid arthritis.  相似文献   

17.
The anti-angiogenic effects of conjugated docosahexaenoic acid (CDHA), which was prepared by an alkaline treatment of docosahexaenoic acid and contained conjugated double bonds, were investigated in vitro and in vivo. CDHA inhibited tube formation by the bovine aortic endothelial cell (BAEC), and also inhibited the proliferation of BAEC at a concentration of CDHA that suppressed tube formation, but did not influence cell migration. The inhibition of BAEC growth caused by CDHA was accompanied by a marked change in cellular morphology. Nuclear condensation and brightness were observed in Hoechst 33342-stained cells treated with CDHA, indicating that CDHA induced apoptosis in BAEC. We also evaluated the angiogenesis inhibition of CDHA in vivo. The vessel formation which was triggered by tumor cells was clearly suppressed in mice orally given CDHA. Our findings suggest that CDHA has potential use as a therapeutic dietary supplement for minimizing tumor angiogenesis.  相似文献   

18.
Angiogenesis occurs during tissue growth, development and wound healing. It is also required for tumor progression and represents a rational target for therapeutic intervention. NBM-T-BMX-OS01 (BMX), derived from the semisynthesis of osthole, an active ingredient isolated from Chinese herb Cnidium monnieri (L.) Cuss., was recently shown to enhance learning and memory in rats. In this study, we characterized the anti-angiogenic activities of NBM-T-BMX-OS01 (BMX) in an effort to develop novel inhibitors to suppress angiogenesis and tumor growth. BMX inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration and endothelial tube formation in human umbilical endothelial cells (HUVECs). BMX also attenuated VEGF-induced microvessel sprouting from aortic rings ex vivo and reduced HCT116 colorectal cancer cells-induced angiogenesis in vivo. Moreover, BMX inhibited the phosphorylation of VEGFR2, FAK, Akt and ERK in HUVECs exposed to VEGF. BMX was also shown to inhibit HCT116 cell proliferation and to suppress the growth of subcutaneous xenografts of HCT116 cells in vivo. Taken together, this study provides evidence that BMX modulates vascular endothelial cell remodeling and leads to the inhibition of tumor angiogenesis. These results also support the role of BMX as a potential drug candidate and warrant the clinical development in the treatment of cancer.  相似文献   

19.
Kim MY  Byeon CW  Hong KH  Han KH  Jeong S 《FEBS letters》2005,579(7):1597-1601
The CC chemokine, monocyte chemoattractant protein-1 (MCP-1), plays a crucial role in the initiation of atherosclerosis and has direct effects that promote angiogenesis. To develop a specific inhibitor for MCP-1-induced angiogenesis, we performed in vitro selection employing phage display random peptide libraries. Most of the selected peptides were found to be homologous to the second extracellular loops of CCR2 and CCR3. We synthesized the peptide encoding the homologous sequences of the receptors and tested its effect on the MCP-1 induced angiogenesis. Surface plasmon resonance measurements demonstrated specific binding of the peptide to MCP-1 but not to the other homologous protein, MCP-3. Flow cytometry revealed that the peptide inhibited the MCP-1 binding to THP-1 monocytes. Moreover, CAM and rat aortic ring assays showed that the peptide inhibited MCP-1 induced angiogenesis. Our observations indicate that the MCP-1-binding peptide exerts its anti-angiogenic effect by interfering with the interaction between MCP-1 and its receptor.  相似文献   

20.
Angiogenesis, a crucial step in the growth and metastasis of cancers, is initiated with vasodilation mediated by nitric oxide (NO). The pro-inflammatory cytokine, tumour necrosis factor-alpha (TNF-alpha), is a mediator of nitric oxide synthesis. We analyzed the effect of allyl isothiocyanate (AITC) and phenyl isothiocyanate (PITC) on serum NO as well as TNF-alpha level during angiogenesis. In vivo antiangiogenic activity was studied using B16F-10 melanoma cell-induced capillary formation in C57BL/6 mice. Intraperitoneal administration of AITC and PITC at a concentration of 25 microg/dose/animal significantly inhibited tumour-directed capillary formation. Treatment of AITC and PITC significantly downregulated serum NO as well as TNF-alpha level in angiogenesis-induced animals compared to untreated control animals. The in vitro antiangiogenic study, using rat aortic ring assay, showed that both AITC and PITC at non-toxic concentrations inhibited the production of proangiogenic factors from B16F-10 melanoma cells which was evident with the inhibition of microvessel outgrowth from aortic rings. Both AITC and PITC significantly inhibited sodium nitroprusside as well as TNF-alpha-induced microvessel outgrowth from rat aortic ring. Administration of AITC and PITC also significantly reduced NO and TNF-alpha production by LPS-stimulated macrophages both in vivo as well as in vitro. Bio-assay using serum of angiogenesis-induced animals and supernatant from LPS-stimulated macrophages clearly confirmed the downregulatory action of AITC and PITC on TNF-alpha production. These results clearly demonstrated that AITC and PITC inhibited tumour-specific angiogenesis by downregulating NO and TNF-alpha production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号