首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rod cGMP phosphodiesterase 6 (PDE6) is a key enzyme of the phototransduction cascade, consisting of PDE6α, PDE6β, and two regulatory PDE6γ subunits. PDE6 is membrane associated through isoprenyl membrane anchors attached to the C-termini of PDE6α and PDE6β and can form a complex with prenyl-binding protein δ (PrBP/δ), an isoprenyl-binding protein that is highly expressed in photoreceptors. The stoichiometry of PDE6-PrBP/δ binding and the mechanism by which the PDE6-PrBP/δ complex assembles have not been fully characterized, and the location of regulatory PDE6γ subunits within the protein assembly has not been elucidated. To clarify these questions, we have developed a rapid purification method for PDE6-PrBP/δ from bovine rod outer segments utilizing recombinant PrBP/δ. Transmission electron microscopy of negatively stained samples revealed the location of PrBP/δ and, thus, where the carboxyl-termini of PDE6α and PDE6β must be located. The three-dimensional structure of the PDE6αβγ complex was determined up to 18 Å resolution from single-particle projections and was interpreted by model building to identify the probable location of isoprenylation, PDE6γ subunits, and catalytic sites.  相似文献   

2.
As the central effector of visual transduction, the regulation of photoreceptor phosphodiesterase (PDE6) is controlled by both allosteric mechanisms and extrinsic binding partners. However, the conformational changes and interactions of PDE6 with known interacting proteins are poorly understood. Using a fluorescence detection system for the analytical ultracentrifuge, we examined allosteric changes in PDE6 structure and protein-protein interactions with its inhibitory γ-subunit, the prenyl-binding protein (PrBP/δ), and activated transducin. In solution, the PDE6 catalytic dimer (Pαβ) exhibits a more asymmetric shape (axial ratio of 6.6) than reported previously. The inhibitory Pγ subunit behaves as an intrinsically disordered protein in solution but binds with high affinity to the catalytic dimer to reconstitute the holoenzyme without a detectable change in shape. Whereas the closely related PDE5 homodimer undergoes a significant change in its sedimentation properties upon cGMP binding to its regulatory cGMP binding site, no such change was detected upon ligand binding to the PDE6 catalytic dimer. However, when Pαβ was reconstituted with Pγ truncation mutants lacking the C-terminal inhibitory region, cGMP-dependent allosteric changes were observed. PrBP/δ bound to the PDE6 holoenzyme with high affinity (K(D) = 6.2 nm) and induced elongation of the protein complex. Binding of activated transducin to PDE6 holoenzyme resulted in a concentration-dependent increase in the sedimentation coefficient, reflecting a dynamic equilibrium between transducin and PDE6. We conclude that allosteric regulation of PDE6 is more complex than for PDE5 and is dependent on interactions of regions of Pγ with the catalytic dimer.  相似文献   

3.
The mammalian rod photoreceptor phosphodiesterase (PDE6) holoenzyme is isolated in both a membrane-associated and a soluble form. Membrane binding is a consequence of prenylation of PDE6 catalytic subunits, whereas soluble PDE6 is purified with a 17-kDa prenyl-binding protein (PDEdelta) tightly bound. This protein, here termed PrBP/delta, has been hypothesized to reduce activation of PDE6 by transducin, thereby desensitizing the photoresponse. To test the potential role of PrBP/delta in regulating phototransduction, we examined the abundance, localization, and potential binding partners of PrBP/delta in retina and in purified rod outer segment (ROS) suspensions whose physiological and biochemical properties are well characterized. The amphibian homologue of PrBP/delta was cloned and sequenced and found to have 82% amino acid sequence identity with mammalian PrBP/delta. In contrast to bovine ROS, all of the PDE6 in purified frog ROS is membrane-associated. However, addition of recombinant frog PrBP/delta can solubilize PDE6 and prevent its activation by transducin. PrBP/delta also binds other prenylated photoreceptor proteins in vitro, including opsin kinase (GRK1/GRK7) and rab8. Quantitative immunoblot analysis of the PrBP/delta content of purified ROS reveals insufficient amounts of PrBP/delta (<0.1 PrBP/delta per PDE6) to serve as a subunit of PDE6 in either mammalian or amphibian photoreceptors. The immunolocalization of PrBP/delta in frog and bovine retina shows greatest PrBP/delta immunolabeling outside the photoreceptor cell layer. Within photoreceptors, only the inner segments of frog double cones are strongly labeled, whereas bovine photoreceptors reveal more PrBP/delta labeling near the junction of the inner and outer segments (connecting cilium) of photoreceptors. Together, these results rule out PrBP/delta as a PDE6 subunit and implicate PrBP/delta in the transport and membrane targeting of prenylated proteins (including PDE6) from their site of synthesis in the inner segment to their final destination in the outer segment of rods and cones.  相似文献   

4.
The cGMP phosphodiesterase of rod photoreceptor cells, PDE6, is the key effector enzyme in phototransduction. Two large catalytic subunits, PDE6α and -β, each contain one catalytic domain and two non-catalytic GAF domains, whereas two small inhibitory PDE6γ subunits allow tight regulation by the G protein transducin. The structure of holo-PDE6 in complex with the ROS-1 antibody Fab fragment was determined by cryo-electron microscopy. The ∼11 Å map revealed previously unseen features of PDE6, and each domain was readily fit with high resolution structures. A structure of PDE6 in complex with prenyl-binding protein (PrBP/δ) indicated the location of the PDE6 C-terminal prenylations. Reconstructions of complexes with Fab fragments bound to N or C termini of PDE6γ revealed that PDE6γ stretches from the catalytic domain at one end of the holoenzyme to the GAF-A domain at the other. Removal of PDE6γ caused dramatic structural rearrangements, which were reversed upon its restoration.  相似文献   

5.
Photoreceptor phosphodiesterase (PDE6) is the central effector enzyme in visual excitation pathway in rod and cone photoreceptors. Its tight regulation is essential for the speed, sensitivity, recovery and adaptation of visual detection. Although major steps in the PDE6 activation/deactivation pathway have been identified, mechanistic understanding of PDE6 regulation is limited by the lack of knowledge about the molecular organization of the PDE6 holoenzyme (αβγγ). Here, we characterize the PDE6 holoenzyme by integrative structural determination of the PDE6 catalytic dimer (αβ), based primarily on chemical cross-linking and mass spectrometric analysis. Our models built from high-density cross-linking data elucidate a parallel organization of the two catalytic subunits, with juxtaposed α-helical segments within the tandem regulatory GAF domains to provide multiple sites for dimerization. The two catalytic domains exist in an open configuration when compared to the structure of PDE2 in the apo state. Detailed structural elements for differential binding of the γ-subunit to the GAFa domains of the α- and β-subunits are revealed, providing insight into the regulation of the PDE6 activation/deactivation cycle.  相似文献   

6.
Rod and cone photoreceptor neurons utilize discrete PDE6 enzymes that are crucial for phototransduction. Rod PDE6 is composed of heterodimeric catalytic subunits (αβ), while the catalytic core of cone PDE6 (α') is a homodimer. It is not known if variations between PDE6 subunits preclude rod PDE6 catalytic subunits from coupling to the cone phototransduction pathway. To study this issue, we generated a cone-dominated mouse model lacking cone PDE6 (Nrl(-/-) cpfl1). In this animal model, using several independent experimental approaches, we demonstrated the expression of rod PDE6 (αβ) and the absence of cone PDE6 (α') catalytic subunits. The rod PDE6 enzyme expressed in cone cells is active and contributes to the hydrolysis of cGMP in response to light. In addition, rod PDE6 expressed in cone cells couples to the light signaling pathway to produce S-cone responses. However, S-cone responses and light-dependent cGMP hydrolysis were eliminated when the β-subunit of rod PDE6 was removed (Nrl(-/-) cpfl1 rd). We conclude that either rod or cone PDE6 can effectively couple to the cone phototransduction pathway to mediate visual signaling. Interestingly, we also found that functional PDE6 is required for trafficking of M-opsin to cone outer segments.  相似文献   

7.
《Journal of molecular biology》2019,431(19):3677-3689
Photoreceptor phosphodiesterase (PDE6) is the central effector enzyme in the visual excitation pathway in rod and cone photoreceptors. Its tight regulation is essential for the speed, sensitivity, recovery, and adaptation of visual signaling. The rod PDE6 holoenzyme (Pαβγ2) is composed of a catalytic heterodimer (Pαβ) that binds two inhibitory γ subunits. Each of the two catalytic subunits (Pα and Pβ) contains a catalytic domain responsible for cGMP hydrolysis and two tandem GAF domains, one of which binds cGMP noncatalytically. Unlike related GAF-containing PDEs where cGMP binding allosterically activates catalysis, the physiological significance of cGMP binding to the GAF domains of PDE6 is unknown. To elucidate the structural determinants of PDE6 allosteric regulators, we biochemically characterized PDE6 complexes in various allosteric states (Pαβ, Pαβ–cGMP, Pαβγ2, and Pαβγ2–cGMP) with a quantitative cross-linking/mass spectrometry approach. We employed a normalization strategy to dissect the cross-linking reactivity of individual residues in order to assess the spatial cross-linking propensity of detected pairs. In addition to identifying cross-linked pairs that undergo conformational changes upon ligand binding, we observed an asymmetric binding of the inhibitory γ-subunit and the noncatalytic cGMP to the GAFa domains of rod PDE6, as well as a stable open conformation of Pαβ catalytic dimer in different allosteric states. These results advance our understanding of the exquisite regulatory control of the lifetime of rod PDE6 activation/deactivation during visual signaling, as well as providing a structural basis for interpreting how mutations in rod PDE6 subunits can lead to retinal diseases.  相似文献   

8.
Rod photoreceptor phosphodiesterase (PDE6) is the key catalytic enzyme of visual phototransduction. PDE6 is the only member of the phosphodiesterase family that consists of a heterodimeric catalytic core composed of PDE6α and PDE6β subunits and two inhibitory PDE6γ subunits. Both PDE6α and PDE6β contain two regulatory GAF domains and one catalytic domain. GAF domains and the tightly bound PDE6γ subunits allosterically regulate the activity of the catalytic domain in association with the GTP-bound transducin alpha subunit (Gtα-GTP). Recent cryo-electron microscopy structures of the PDE6αγβγ and PDE6αγβγ-(Gtα-GTP)2 complexes have provided valuable knowledge shedding additional light on the allosteric activation of PDE6 by Gtα-GTP. Here we discuss recent developments in our understanding of the mechanism of PDE6 activation.  相似文献   

9.
Protein phosphatase 2A (PP2A) holoenzyme is composed of a catalytic subunit, C, and two regulatory subunits, A and B. The A subunit is rod shaped and consists of 15 nonidentical repeats. According to our previous model, the B subunit binds to repeats 1 through 10 and the C subunit binds to repeats 11 through 15 of the A subunit. Another form of PP2A, core enzyme, is composed only of subunits A and C. It is generally believed that core enzyme does not exist in cells but is an artifact of enzyme purification. To study the structure and relative abundance of different forms of PP2A, we generated monoclonal antibodies against the native A subunit. Two antibodies, 5H4 and 1A12, recognized epitopes in repeat 1 near the N terminus and immunoprecipitated free A subunit and core enzyme but not holoenzyme. Another antibody, 6G3, recognized an epitope in repeat 15 at the C terminus and precipitated only the free A subunit. Monoclonal antibodies against a peptide corresponding to the N-terminal 11 amino acids of the A alpha subunit (designated 6F9) precipitated free A subunit, core enzyme, and holoenzyme. 6F9, but not 5H4, recognized holoenzymes containing either B, B', or B" subunits. These results demonstrate that B subunits from three unrelated gene families all bind to repeat 1 of the A subunit, and the results confirm and extend our model of the holoenzyme. By sequential immunoprecipitations with 5H4 or 1A12 followed by 6F9, core enzyme and holoenzyme in cytoplasmic extracts from 10T1/2 cells were completely separated and they exhibited the expected specificities towards phosphorylase a and retinoblastoma peptide as substrates. Quantitative analysis showed that under conditions which minimized proteolysis and dissociation of holoenzyme, core enzyme represented at least one-third of the total PP2A. We conclude that core enzyme is an abundant form in cells rather than an artifact of isolation. The biological implications of this finding are discussed.  相似文献   

10.
Z Hillel  C W Wu 《Biochemistry》1977,16(15):3334-3342
The quaternary structures of Escherichia coli DNA-dependent RNA polymerase holenzyme (alpha 2 beta beta' sigma) and core enzyme (alpha 2 beta beta') have been investigated by chemical cross-linking with a cleavable bifunctional reagent, methyl 4-mercaptobutyrimidate, and noncleavable reagents, dimethyl suberimidate and N,N'-(1,4-phenylene)bismaleimide. A model of the subunit organization deduced from cross-linked subunit neighbors identified by dodecyl sulfate-polyacrylamide gel electrophoresis indicates that the large beta and beta' subunits constitute the backbone of both core and holoenzyme, while sigma and two alpha subunits interact with this structure along the contact domain of beta and beta' subunits. In holoenzyme, sigma subunit is in the vicinity of at least one alpha subunit. The two alpha subunits are close to each other in holoenzyme, core enzyme, and the isolated alpha 2 beta complex. Cross-linking of the "premature" core and holoenzyme intermediates in the in vitro reconstitution of active enzyme from isolated subunits suggests that these species are composed of subunit complexes of molecular weight lower than that of native core and holoenzyme, respectively. The structural information obtained for RNA polymerase and its subcomplexes has important implications for the enzyme-promoter recognition as well as the mechanism of subunit assembly of the enzyme.  相似文献   

11.
Drosophila mitochondrial DNA polymerase has been reconstituted and purified from baculovirus-infected insect cells. Baculoviruses encoding full-length and mature forms of the catalytic and accessory subunits were generated and used in single and co-infection studies. Recombinant heterodimeric holoenzyme was reconstituted in both the mitochondria and cytoplasm of Sf9 cells and required the mitochondrial presequences in both subunits. The recombinant holoenzyme contains DNA polymerase and 3'-5' exonuclease that are stimulated substantially by both salt and mitochondrial single-stranded DNA-binding protein. Thus, the recombinant enzyme exhibits biochemical properties indistinguishable from those of the native enzyme from Drosophila embryos. Production of the catalytic subunit alone yielded soluble protein with the chromatographic properties of the heterodimeric holoenzyme. However, the purified catalytic core has a 50-fold lower specific activity. This provides evidence of a critical role for the accessory subunit in the catalytic efficiency of Drosophila mitochondrial DNA polymerase.  相似文献   

12.
Phosphodiesterases (PDEs) comprise a superfamily of phosphohydrolases that degrade 3',5'-cyclic nucleotides. All known mammalian PDEs are dimeric, but the functional significance of dimerization is unknown. A deletion mutant of cGMP-binding cGMP-specific PDE (PDE5), encoding the 357 carboxyl-terminal amino acids including the catalytic domain, has been generated, expressed, and purified. The K(m) of the catalytic fragment for cGMP (5.5 +/- 0. 51 microM) compares well with those of the native bovine lung PDE5 (5.6 microM) and full-length wild type recombinant PDE5 (2 +/- 0.4 microM). The catalytic fragment and full-length PDE5 have similar IC(50) values for the inhibitors 3-isobutyl-1-methylxanthine (20 microM) and sildenafil (Viagra(TM))(4 nM). Based on measured values for Stokes radius (29 A) and sedimentation coefficient (2.9 S), the PDE5 catalytic fragment has a calculated molecular mass of 35 kDa, which agrees well with that predicted by amino acid content (43.3 kDa) and with that estimated using SDS-polyacrylamide gel electrophoresis (39 kDa). The combined data indicate that the recombinant PDE5 catalytic fragment is monomeric, and retains the essential catalytic features of the dimeric, full-length enzyme. Therefore, the catalytic activity of PDE5 holoenzyme requires neither interaction between the catalytic and regulatory domains nor interactions between subunits of the dimer.  相似文献   

13.
T G Wensel  L Stryer 《Biochemistry》1990,29(8):2155-2161
The cyclic GMP phosphodiesterase (PDE) of vertebrate retinal rod outer segments (ROS) is kept inactive in the dark by its gamma subunits and is activated following illumination by the GTP form of the alpha subunit of transducin (T alpha-GTP). Recent studies have shown that the stoichiometry of the inhibited holoenzyme is alpha beta gamma 2. T alpha-GTP and gamma act reciprocally. We have investigated the activation mechanism using fluorescein-labeled gamma subunit (gamma F) as a probe. gamma F containing a single covalently attached fluorescein was prepared by reaction of PDE with 5-(iodoacetamido)fluorescein and purification by reversed-phase high-pressure liquid chromatography (HPLC). gamma F, like native gamma, inhibits the catalytic activity of trypsin-activated PDE and transducin-activated PDE. Inhibition by gamma F was overcome by further addition of T alpha-GTP. gamma F binds very weakly to ROS membranes stripped of PDE and other peripheral membrane proteins. gamma F added to ROS membranes became incorporated into a component that could be extracted with a low ionic strength buffer. HPLC gel filtration showed that gamma F became part of the PDE holoenzyme. Incorporation occurred in less than 1 min in the presence of light and GTP, but much more slowly (t1/2 approximately 500 s) in the absence of GTP. This result indicates that transducin activates PDE by binding to the holoenzyme and accelerating the dissociation of gamma from the inhibitory sites. The binding of gamma F to trypsin-activated PDE alpha beta was monitored by steady-state emission anisotropy measurements and compared with PDE activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Retinal photoreceptor phosphodiesterase (PDE6) is unique among the phosphodiesterase enzyme family not only for its catalytic heterodimer but also for its regulatory γ-subunits (Pγ) whose inhibitory action is released upon binding to the G-protein transducin. It is generally assumed that during visual excitation both catalytic sites are relieved of Pγ inhibition upon binding of two activated transducin molecules. Because PDE6 shares structural and pharmacological similarities with PDE5, we utilized radiolabeled PDE5 inhibitors to probe the catalytic sites of PDE6. The membrane filtration assay we used to quantify [3H]vardenafil binding to PDE6 required histone II-AS to stabilize drug binding to the active site. Under these conditions, [3H]vardenafil binds stoichiometrically to both the α- and β-subunits of the activated PDE6 heterodimer. [3H]vardenafil fails to bind to either the PDE6 holoenzyme or the PDE6 catalytic dimer reconstituted with Pγ, consistent with Pγ blocking access to the drug-binding sites. Following transducin activation of membrane-associated PDE6 holoenzyme, [3H]vardenafil binding increases in proportion to the extent of PDE6 activation. Both [3H]vardenafil binding and hydrolytic activity of transducin-activated PDE6 fail to exceed 50% of the value for the PDE6 catalytic dimer. However, adding a 1000-fold excess of activated transducin can stimulate the hydrolytic activity of PDE6 to its maximum extent. These results demonstrate that both subunits of the PDE6 heterodimer are able to bind ligands to the enzyme active site. Furthermore, transducin relieves Pγ inhibition of PDE6 in a biphasic manner, with only one-half of the maximum PDE6 activity efficiently attained during visual excitation.  相似文献   

15.
Retinal rod cGMP phosphodiesterase (PDE6 family) is the effector enzyme in the vertebrate visual transduction cascade. Unlike other known PDEs that form catalytic homodimers, the rod PDE6 catalytic core is a heterodimer composed of alpha and beta subunits. A system for efficient expression of rod PDE6 is not available. Therefore, to elucidate the structural basis for specific dimerization of rod PDE6, we constructed a series of chimeric proteins between PDE6alphabeta and PDE5, which contain the N-terminal GAFa/GAFb domains, or portions thereof, of the rod enzyme. These chimeras were co-expressed in Sf9 cells in various combinations as His-, myc-, or FLAG-tagged proteins. Dimerization of chimeric PDEs was assessed using gel filtration and sucrose gradient centrifugation. The composition of formed dimeric enzymes was analyzed with Western blotting and immunoprecipitation. Consistent with the selectivity of PDE6 dimerization in vivo, efficient heterodimerization was observed between the GAF regions of PDE6alpha and PDE6beta with no significant homodimerization. In addition, PDE6alpha was able to form dimers with the cone PDE6alpha' subunit. Furthermore, our analysis indicated that the PDE6 GAFa domains contain major structural determinants for the affinity and selectivity of dimerization of PDE6 catalytic subunits. The key dimerization selectivity module of PDE6 has been localized to a small segment within the GAFa domains, PDE6alpha-59-74/PDE6beta-57-72. This study provides tools for the generation of the homodimeric alphaalpha and betabeta enzymes that will allow us to address the question of functional significance of the unique heterodimerization of rod PDE6.  相似文献   

16.
The aspartate transcarbamoylases (ATCase, EC 2.1.3.2) of Escherichia coli and Serratia marcescens have similar dodecameric enzyme structures (2(c3):3(r2] but differ in both regulatory and catalytic characteristics. The catalytic cistrons (pyrB) of the ATCases from E. coli and S. marcescens encode polypeptides of 311 and 306 amino acids, respectively; there is a 76% identity between the DNA sequences and an overall amino acid homology of 88% (38 differences). The regulatory cistrons (pyrI) of these ATCases encode polypeptides of 153 and 154 amino acids, respectively, and there is a 75% identity between the DNA sequences and an overall amino acid homology of 77% (36 differences). In both species, the two genes are arranged as a bicistronic operon, with pyrB promoter proximal. A comparison of the deduced amino acid sequences reveals that the active site and the allosteric binding sites, as well as most of the intrasubunit interactions and intersubunit associations, are conserved in the E. coli and the S. marcescens enzymes; however, there are specific differences which undoubtedly contribute to the catalytic and regulatory differences between the enzymes of the two species. These differences include residues that have been implicated in the T-R transition, c1:r1 interface interactions, and the CTP binding site. A hybrid ATCase assembled in vivo with catalytic subunits from E. coli and regulatory subunits from S. marcescens has a 6 mM requirement for aspartate at half-maximal saturation, similar to the 5.5 mM aspartate requirement of the native E. coli holoenzyme at half-maximal saturation. However, the heterotropic response of this hybrid enzyme is characteristic of the heterotropic response of the native S. marcescens holoenzyme: ATP activation and CTP activation. Activation by both allosteric effectors indicates that the heterotropic response of this hybrid holoenzyme (Cec:Rsm) is determined by the associated S. marcescens regulatory subunits.  相似文献   

17.
The rod photoreceptor phosphodiesterase (PDE) is unique among all known vertebrate PDE families for several reasons. It is a catalytic heterodimer (alphabeta); it is directly activated by a G-protein, transducin; and its active sites are regulated by inhibitory gamma subunits. Rod PDE binds cGMP at two noncatalytic sites on the alphabeta dimer, but their function is unclear. We show that transducin activation of frog rod PDE introduces functional heterogeneity to both the noncatalytic and catalytic sites. Upon PDE activation, one noncatalytic site is converted from a high affinity to low affinity state, whereas the second binding site undergoes modest decreases in binding. Addition of gamma to transducin-activated PDE can restore high affinity binding as well as reducing cGMP exchange kinetics at both sites. A strong correlation exists between cGMP binding and gamma binding to activated PDE; dissociation of bound cGMP accompanies gamma dissociation from PDE, whereas addition of either cGMP or gamma to alphabeta dimers can restore high affinity binding of the other molecule. At the active site, transducin can activate PDE to about one-half the turnover number for catalytic alphabeta dimers completely lacking bound gamma subunit. These results suggest a mechanism in which transducin interacts primarily with one PDE catalytic subunit, releasing its full catalytic activity as well as inducing rapid cGMP dissociation from one noncatalytic site. The state of occupancy of the noncatalytic sites on PDE determines whether gamma remains bound to activated PDE or dissociates from the holoenzyme, and may be relevant to light adaptation in photoreceptor cells.  相似文献   

18.
Glyceraldehyde-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate : NADP+ oxidoreductase (phosphorylating), EC 1.2.1.13) from spinach chloroplasts is a polymeric protein of approx. 600,000 daltons and sodium dodecyl sulphate gel electrophoresis shows that it consists of two subunits of molecular weight 43,000 and 37,000. Comparison of amino acid analyses and tryptic peptide maps indicates that the two subunits have a different primary structure. The native enzyme contains 0.5 mol of NADP+ and 0.5 mol of NAD+ per protomer of 80,000 daltons, no reduced pyridine nucleotides have been detected. Almost complete inactivation is obtained by reaction of two cysteinyl residues per 80,000 daltons with tetrathionate or iodo[14C2]acetic acid; since the same amount of radioactivity is incorporated in the two subunits it is likely that they are both essential for the catalytic activity. Charcoal stripping of native glyceraldehyde-phosphate dehydrogenase produces an apoprotein which still retains most of the enzymatic activity but, unlike the holoenzyme, is gradually inactivated by storage at 4 degrees C and does not react with iodoacetate under the same conditions in which the holoenzyme is completely inactivated.  相似文献   

19.
20.
The complete amino acid sequence of the cyclic GMP stimulated cyclic nucleotide phosphodiesterase (cGS-PDE) of bovine heart has been determined by analysis of five digests of the protein; placement of the C-terminal 330 residues has been confirmed by interpretation of the corresponding partial cDNA clone. The holoenzyme is a homodimer of two identical N alpha-acetylated polypeptide chains of 921 residues, each with a calculated molecular weight of 103,244. The C-terminal region, residues 613-871, of the cGS-PDE comprises a catalytic domain that is conserved in all phosphodiesterase sequences except those of PDE 1 from Saccharomyces cerevisiae and a secreted PDE from Dictyostelium. A second conserved region, residues 209-567, is homologous to corresponding regions of the alpha and alpha' subunits of the photoreceptor phosphodiesterases. This conserved domain specifically binds cGMP and is involved in the allosteric regulation of the cGS-PDE. This regulatory domain contains two tandem, internal repeats, suggesting that it evolved from an ancestral gene duplication. Common cyclic nucleotide binding properties and a distant structural relationship provide evidence that the catalytic and regulatory domains within the cGS- and photoreceptor PDEs are also related by an ancient internal gene duplication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号