首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mycobacterium bovis and Mycobacterium tuberculosis infect both animals and humans. The disease epidemiology by these agents differs in developed and developing countries due to the differences in the implementation of the prevention and control strategies. The present study describes the detection of M. bovis and M. tuberculosis from specimens of lungs and pulmonary lymph nodes of four cattle died in an organized herd of 183 cattle in the state of Himachal Pradesh, India, with inconclusive skin test results. Identification and distinction of these closely related mycobacterial species was done by PCR-RFLP targeting hsp65 gene followed by spacer oligonucleotide typing. Mixed infection of M. bovis and M. tuberculosis was detected in one cattle.  相似文献   

2.
The AhpC/AhpD system of Mycobacterium tuberculosis provides important antioxidant protection, particularly when the KatG catalase-peroxidase activity is depressed, as it is in many isoniazid resistant strains. In the absence of lipoamide or bovine dihydrolipoamide dehydrogenase (DHLDH), components of the normal catalytic system, covalent dimers, tetramers, and hexamers are formed when a mixture of AhpC and AhpD is exposed to peroxide. Each of the oligomers contains equimolar amounts of AhpC and AhpD. This oligomerization is reversible because the oligomers can be fully reduced to the monomeric species by dithiothreitol. Using mutagenesis, we confirm here that Cys61 and Cys174 of AhpC as well as Cys133 and Cys130 of AhpD are critical for activity in the fully reconstituted system consisting of AhpC, AhpD, lipoamide, DHLDH, and NADH. A key step in the reduction of oxidized AhpC by reduced AhpD is formation of a disulfide cross-link between Cys61 of AhpC and Cys133 of AhpD. This cross-link can be reduced by intramolecular reaction with either Cys174 of AhpC or Cys130 of AhpD. Cys176 can also, to some extent, substitute for Cys174, providing a measure of redundancy that helps to maintain the efficiency of this antioxidant protective system.  相似文献   

3.
The frontline tuberculosis drug isoniazid (INH) inhibits InhA, the NADH-dependent fatty acid biosynthesis (FAS-II) enoyl reductase from Mycobacterium tuberculosis (MTB), via formation of a covalent adduct with NAD(+) (the INH-NAD adduct). Resistance to INH can be correlated with many mutations in MTB, some of which are localized in the InhA cofactor binding site. While the InhA mutations cause a substantial decrease in the affinity of InhA for NADH, surprisingly the same mutations result in only a small impact on binding of the INH-NAD adduct. Based on the knowledge that InhA interacts in vivo with other components of the FAS-II pathway, we have initiated experiments to determine whether enzyme inhibition results in structural changes that could affect protein-protein interactions involving InhA and how these ligand-induced conformational changes are modulated in the InhA mutants. Significantly, while NADH binding to wild-type InhA is hyperbolic, the InhA mutants bind the cofactor with positive cooperativity, suggesting that the mutations permit access to a second conformational state of the protein. While cross-linking studies indicate that enzyme inhibition causes dissociation of the InhA tetramer into dimers, analytical ultracentrifugation and size exclusion chromatography reveal that ligand binding causes a conformational change in the protein that prevents cross-linking across one of the dimer-dimer interfaces in the InhA tetramer. Interestingly, a similar ligand-induced conformational change is also observed for the InhA mutants, indicating that the mutations modulate communication between the subunits without affecting the two conformational states of the protein that are present.  相似文献   

4.
The shikimate pathway is an attractive target for herbicides and antimicrobial agent development because it is essential in algae, higher plants, bacteria, and fungi, but absent from mammals. Homologues to enzymes in the shikimate pathway have been identified in the genome sequence of Mycobacterium tuberculosis. Among them, the EPSP synthase was proposed to be present by sequence homology. Accordingly, in order to pave the way for structural and functional efforts towards anti-mycobacterial agent development, here we describe the molecular modeling of 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase isolated from M. tuberculosis that should provide a structural framework on which the design of specific inhibitors may be based on. Significant differences in the relative orientation of the domains in the two models result in "open" and "closed" conformations. The possible relevance of this structural transition in the ligand biding is discussed.  相似文献   

5.
Mycobacterium tuberculosis ESAT-6 (MtbESAT-6) reportedly shows membrane/cell-lysis activity, and recently its biological roles in pathogenesis have been implicated in rupture of the phagosomes for bacterial cytosolic translocation. However, molecular mechanism of MtbESAT-6-mediated membrane interaction, particularly in relation with its biological functions in pathogenesis, is poorly understood. In this study, we investigated the pH-dependent membrane interaction of MtbESAT-6, MtbCFP-10, and the MtbESAT-6/CFP-10 heterodimer, by using liposomal model membranes that mimic phagosomal compartments. MtbESAT-6, but neither MtbCFP-10 nor the heterodimer, interacted with the liposomal membranes at acidic conditions, which was evidenced by release of K+ ions from the liposomes. Most importantly, the orthologous ESAT-6 from non-pathogenic Mycobacterium smegmatis (MsESAT-6) was essentially inactive in release of K+. The differential membrane interactions between MtbESAT-6 and MsESAT-6 were further confirmed in an independent membrane leakage assay using the dye/quencher pair, 8-aminonapthalene-1,3,6 trisulfonic acid (ANTS)/p-xylene-bis-pyridinium bromide (DPX). Finally, using intrinsic and extrinsic fluorescence approaches, we probed the pH-dependent conformational changes of MtbESAT-6 and MsESAT-6. At acidic pH conditions, MtbESAT-6 underwent a significant conformational change, which was featured by an increased solvent-exposed hydrophobicity, while MsESAT-6 showed little conformational change in response to acidification. In conclusion, we have demonstrated that MtbESAT-6 possesses a unique membrane-interacting activity that is not found in MsESAT-6 and established the utility of rigorous biochemical approaches in dissecting the virulence of M. tuberculosis.  相似文献   

6.
Mycobacterium tuberculosis is a gram-positive bacterium causes tuberculosis in human. H37Rv strain is a pathogenic strain utilized for tuberculosis research. The cytidylate mono-phosphate (CMP) kinase of Mycobacterium tuberculosis belongs to the family nucleoside mono-phosphate kinase (NMK), this enzyme is required for the bacterial growth. Therefore, it is important to study the structural and functional features of this enzyme in the control of the disease. Hence, we developed the structural molecular model of the CMP kinase protein from Mycobacterium tuberculosis by homology modeling using the software MODELLER (9v10). Based on sequence similarity with protein of known structure (template) of Mycobacterium smegmatis (PDB ID: 3R20) was chosen from protein databank (PDB) by using BLASTp. The energy of constructed models was minimized and the qualities of the models were evaluated by PROCHECK and VERRIFY-3D. Resulted Ramachandran plot analysis showed that conformations for 100.00% of amino acids residues are within the most favored regions. A possible homologous deep cleft active site was identified in the Model using CASTp program. Amino acid composition and polarity of that protein was observed by CLC-Protein Workbench tool. Expasy''s Prot-param server and CYC_REC tool were used for physiochemical and functional characterization of the protein. Studied of secondary structure of that protein was carried out by computational program, ProFunc. The structure is finally submitted in Protein Model Database. The predicted model permits initial inferences about the unexplored 3D structure of the CMP kinase and may be promote in relational designing of molecules for structure-function studies.  相似文献   

7.
Genome sequencing showed that two proteins in Mycobacterium tuberculosis H37Rv contain the metal binding motif (D/E)X(2)HX(approximately 100)(D/E)X(2)H characteristic of the soluble diiron enzyme superfamily. These putative acyl-ACP desaturase genes desA1 and desA2 were cloned from genomic DNA and expressed in Escherichia coli BL21(DE3). DesA1 was found to be insoluble, but in contrast, DesA2 was a soluble protein amenable to biophysical characterization. Here, we report the 2.0 A resolution X-ray structure of DesA2 determined by multiple anomalous dispersion (MAD) phasing from a Se-met derivative and refinement against diffraction data obtained on the native protein. The X-ray structure shows that DesA2 is a homodimeric protein with a four-helix bundle core flanked by five additional helices that overlay with 192 structurally equivalent amino acids in the structure of stearoyl-ACP Delta9 desaturase from castor plant with an rms difference 1.42 A. In the DesA2 crystals, one metal (likely Mn from the crystallization buffer) was bound in high occupancy at the B-site of the conserved metal binding motif, while the A-site was not occupied by a metal ion. Instead, the amino group of Lys-76 occupied this position. The relationships between DesA2 and known diiron enzymes are discussed.  相似文献   

8.
Isoniazid is a frontline drug used in the treatment of tuberculosis (TB). Isoniazid is a prodrug, requiring activation in the mycobacterial cell by the catalase/peroxidase activity of the katG gene product. TB kills two million people every year and the situation is getting worse due to the increase in prevalence of HIV/AIDS and emergence of multidrug-resistant strains of TB. Arylamine N-acetyltransferase (NAT) is a drug-metabolizing enzyme (E.C. 2.1.3.5). NAT can acetylate isoniazid, transferring an acetyl group from acetyl coenzyme A onto the terminal nitrogen of the drug, which in its N-acetylated form is therapeutically inactive. The bacterium responsible for TB, Mycobacterium tuberculosis, contains and expresses the gene encoding the NAT protein. Isoniazid binds to the NAT protein from Salmonella typhimurium and we report here the mode of binding of isoniazid in the NAT enzyme from Mycobacterium smegmatis, closely related to the M. tuberculosis and S. typhimurium NAT enzymes. The mode of binding of isoniazid to M. smegmatis NAT has been determined using data collected from two distinct crystal forms. We can say with confidence that the observed mode of binding of isoniazid is not an artifact of the crystallization conditions used. The NAT enzyme is active in mycobacterial cells and we propose that isoniazid binds to the NAT enzyme in these cells. NAT activity in M. tuberculosis is likely therefore to modulate the degree of activation of isoniazid by other enzymes within the mycobacterial cell. The structure of NAT with isoniazid bound will facilitate rational drug design for anti-tubercular therapy.  相似文献   

9.
Invulnerability of Mycobacterium tuberculosis to various drugs and its persistency has stood as a hurdle in the race against eradication of the pathogenecity of the bacteria. Identification of novel antituberculosis compounds is highly demanding as the available drugs are resistant. The ability of the bacteria to surpass the body''s defenses and adapt itself to survive for disease reactivation is contributed by secreted proteins called resuscitating promoting factors (Rpfs). These factors aid in virulence and resuscitation from dormancy of the bacteria. Sequence analysis of RpfB was performed and compounds were first screened for toxicity and high-throughput virtual screening eliminating the toxic compounds. To understand the mechanism of ligand binding and interaction, molecular docking was performed for the compounds passing through the filter resulting with better docking studies predicting the possible binding mode of the inhibitors to the protein. Of all the active residues the binding conformation shows that residues Arg194, Arg196, Glu242, and Asn244 of the RpfB protein play vital role in the enzyme activity and interacts with the ligands. Promising compounds have been identified in the current study, thus holding promise for design of antituberculosis drugs.  相似文献   

10.
The transketolase (TKT) enzyme in Mycobacterium tuberculosis represents a novel drug target for tuberculosis treatment and has low homology with the orthologous human enzyme. Here, we report on the structural and kinetic characterization of the transketolase from M. tuberculosis (TBTKT), a homodimer whose monomers each comprise 700 amino acids. We show that TBTKT catalyses the oxidation of donor sugars xylulose-5-phosphate and fructose-6-phosphate as well as the reduction of the acceptor sugar ribose-5-phosphate. An invariant residue of the TKT consensus sequence required for thiamine cofactor binding is mutated in TBTKT; yet its catalytic activities are unaffected, and the 2.5 Å resolution structure of full-length TBTKT provides an explanation for this. Key structural differences between the human and mycobacterial TKT enzymes that impact both substrate and cofactor recognition and binding were uncovered. These changes explain the kinetic differences between TBTKT and its human counterpart, and their differential inhibition by small molecules. The availability of a detailed structural model of TBTKT will enable differences between human and M. tuberculosis TKT structures to be exploited to design selective inhibitors with potential antitubercular activity.  相似文献   

11.
Strains of the Beijing/W genotype of Mycobacterium tuberculosis have been responsible for large outbreaks of tuberculosis around the world, sometimes involving multi-drug resistance. It has been shown that more recently evolved Beijing sublineages are prone to cause outbreaks. Furthermore Beijing is the single predominant cluster in Sri Lanka. The present study identifies that recently evolved sublineages of Beijing strains are present in the study population. The majority of Beijing isolates (92.85%) were pan-susceptible. However, these findings may have important implications for the control and prevention of tuberculosis in Sri Lanka.  相似文献   

12.
The DevRS two component system of Mycobacterium tuberculosis is responsible for its dormancy in host and becomes operative under hypoxic condition. It is experimentally known that phosphorylated DevR controls the expression of several downstream genes in a complex manner. In the present work we propose a theoretical model to show role of binding sites in DevR mediated gene expression. Individual and collective role of binding sites in regulating DevR mediated gene expression has been shown via modeling. Objective of the present work is twofold. First, to describe qualitatively the temporal dynamics of wild type genes and their known mutants. Based on these results we propose that DevR controlled gene expression follows a specific pattern which is efficient in describing other DevR mediated gene expression. Second, to analyze behavior of the system from information theoretical point of view. Using the tools of information theory we have calculated molecular efficiency of the system and have shown that it is close to the maximum limit of isothermal efficiency.  相似文献   

13.
Recent evidence indicates that the prevalence of diseases caused by nontuberculous mycobacteria (NTM) has been increasing in both human and animals. In this study, antibody profiles of NTM in rhesus monkeys (Macaca mulatta) were determined and compared with those of monkeys infected with Mycobacterium tuberculosis complex (MTBC). Antibodies against 10 M. tuberculosis proteins, purified protein derivative (PPD), and mammalian old tuberculin (MOT) were detected in 14 monkeys naturally infected with NTM by indirect ELISA. Sera from 10 monkeys infected with MTBC and 10 healthy monkeys were set as controls. All antigens showed high serological reactivities to MTBC infections and low reactivities in healthy monkeys. NTM infections showed strong antibody responses to MOT and PPD; moderate antibody responses to 16kDa, U1, MPT64L, 14kDa, and TB16.3; and low antibody responses to 38kDa, Ag85b, CFP10, ESAT-6, and CFP10-ESAT-6. According to the criteria of MTBC, only CFP10, ESAT-6, and CFP10-ESAT-6 showed negative antibody responses in all NTM infections. Taken together, these results suggest that positive results of a PPD/MOT-based ELISA in combination with results of antibodies to M. tuberculosis-specific antigens, such as CFP10 and ESAT-6, could discriminate NTM and MTBC infections. Two positive results indicate an MTBC infection, and a negative result for an M. tuberculosis-specific antigen may preliminarily predict an NTM infection.  相似文献   

14.
Mycobacterium tuberculosis (Mtb) and Rhodococcus jostii RHA1 have similar cholesterol catabolic pathways. This pathway contributes to the pathogenicity of Mtb. The hsaAB cholesterol catabolic genes have been predicted to encode the oxygenase and reductase, respectively, of a flavin-dependent mono-oxygenase that hydroxylates 3-hydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17-dione (3-HSA) to a catechol. An hsaA deletion mutant of RHA1 did not grow on cholesterol but transformed the latter to 3-HSA and related metabolites in which each of the two keto groups was reduced: 3,9-dihydroxy-9,10-seconandrost-1,3,5(10)-triene-17-one (3,9-DHSA) and 3,17-dihydroxy-9,10-seconandrost-1,3,5(10)-triene-9-one (3,17-DHSA). Purified 3-hydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17-dione 4-hydroxylase (HsaAB) from Mtb had higher specificity for 3-HSA than for 3,17-DHSA (apparent kcat/Km = 1000 ± 100 m−1 s−1 versus 700 ± 100 m−1 s−1). However, 3,9-DHSA was a poorer substrate than 3-hydroxybiphenyl (apparent kcat/Km = 80 ± 40 m−1 s−1). In the presence of 3-HSA the Kmapp for O2 was 100 ± 10 μm. The crystal structure of HsaA to 2.5-Å resolution revealed that the enzyme has the same fold, flavin-binding site, and catalytic residues as p-hydroxyphenyl acetate hydroxylase. However, HsaA has a much larger phenol-binding site, consistent with the enzyme''s substrate specificity. In addition, a second crystal form of HsaA revealed that a C-terminal flap (Val367–Val394) could adopt two conformations differing by a rigid body rotation of 25° around Arg366. This rotation appears to gate the likely flavin entrance to the active site. In docking studies with 3-HSA and flavin, the closed conformation provided a rationale for the enzyme''s substrate specificity. Overall, the structural and functional data establish the physiological role of HsaAB and provide a basis to further investigate an important class of monooxygenases as well as the bacterial catabolism of steroids.  相似文献   

15.
Pantothenate biosynthesis is essential for the virulence of Mycobacterium tuberculosis, and this pathway thus presents potential drug targets against tuberculosis. We determined the crystal structure of pantothenate synthetase (PS) from M. tuberculosis, and its complexes with AMPCPP, pantoate, and a reaction intermediate, pantoyl adenylate, with resolutions from 1.6 to 2 A. PS catalyzes the ATP-dependent condensation of pantoate and beta-alanine to form pantothenate. Its structure reveals a dimer, and each subunit has two domains with tight association between domains. The active-site cavity is on the N-terminal domain, partially covered by the C-terminal domain. One wall of the active site cavity is flexible, which allows the bulky AMPCPP to diffuse into the active site to nearly full occupancy when crystals are soaked in solutions containing AMPCPP. Crystal structures of the complexes with AMPCPP and pantoate indicate that the enzyme binds ATP and pantoate tightly in the active site, and brings the carboxyl oxygen of pantoate near the alpha-phosphorus atom of ATP for an in-line nucleophilic attack. When crystals were soaked with, or grown in the presence of, both ATP and pantoate, a reaction intermediate, pantoyl adenylate, is found in the active site. The flexible wall of the active site cavity becomes ordered when the intermediate is in the active site, thus protecting it from being hydrolyzed. Binding of beta-alanine can occur only after pantoyl adenylate is formed inside the active site cavity. The tight binding of the intermediate pantoyl adenylate suggests that nonreactive analogs of pantoyl adenylate may be inhibitors of the PS enzyme with high affinity and specificity.  相似文献   

16.
Ribonucleases (RNases) maintain the cellular RNA pool by RNA processing and degradation. In many bacteria, including the human pathogen Mycobacterium tuberculosis (Mtb), the enzymes mediating several central RNA processing functions are still unknown. Here, we identify the hypothetical Mtb protein Rv2179c as a highly divergent exoribonuclease. Although the primary sequence of Rv2179c has no detectable similarity to any known RNase, the Rv2179c crystal structure reveals an RNase fold. Active site residues are equivalent to those in the DEDD family of RNases, and Rv2179c has close structural homology to Escherichia coli RNase T. Consistent with the DEDD fold, Rv2179c has exoribonuclease activity, cleaving the 3′ single-strand overhangs of duplex RNA. Functional orthologs of Rv2179c are prevalent in actinobacteria and found in bacteria as phylogenetically distant as proteobacteria. Thus, Rv2179c is the founding member of a new, large RNase family with hundreds of members across the bacterial kingdom.  相似文献   

17.
Tuberculosis (TB) still holds a major threat to the health of people worldwide, and there is a need for cost-efficient but reliable models to help us understand the disease mechanisms and advance the discoveries of new treatment options. In vitro cell cultures of monolayers or co-cultures lack the three-dimensional (3D) environment and tissue responses. Herein, we describe an innovative in vitro model of a human lung tissue, which holds promise to be an effective tool for studying the complex events that occur during infection with Mycobacterium tuberculosis (M. tuberculosis). The 3D tissue model consists of tissue-specific epithelial cells and fibroblasts, which are cultured in a matrix of collagen on top of a porous membrane. Upon air exposure, the epithelial cells stratify and secrete mucus at the apical side. By introducing human primary macrophages infected with M. tuberculosis to the tissue model, we have shown that immune cells migrate into the infected-tissue and form early stages of TB granuloma. These structures recapitulate the distinct feature of human TB, the granuloma, which is fundamentally different or not commonly observed in widely used experimental animal models. This organotypic culture method enables the 3D visualization and robust quantitative analysis that provides pivotal information on spatial and temporal features of host cell-pathogen interactions. Taken together, the lung tissue model provides a physiologically relevant tissue micro-environment for studies on TB. Thus, the lung tissue model has potential implications for both basic mechanistic and applied studies. Importantly, the model allows addition or manipulation of individual cell types, which thereby widens its use for modelling a variety of infectious diseases that affect the lungs.  相似文献   

18.
Seventy integral membrane proteins from the Mycobacterium tuberculosis genome have been cloned and expressed in Escherichia coli. A combination of T7 promoter-based vectors with hexa-His affinity tags and BL21 E. coli strains with additional tRNA genes to supplement sparsely used E. coli codons have been most successful. The expressed proteins have a wide range of molecular weights and number of transmembrane helices. Expression of these proteins has been observed in the membrane and insoluble fraction of E. coli cell lysates and, in some cases, in the soluble fraction. The highest expression levels in the membrane fraction were restricted to a narrow range of molecular weights and relatively few transmembrane helices. In contrast, overexpression in insoluble aggregates was distributed over a broad range of molecular weights and number of transmembrane helices.  相似文献   

19.
Phosphoglucose isomerase (PGI) is a well-characterized ubiquitous enzyme involved in the glycolytic pathway. It catalyzes the reversible isomerization of D-glucopyranose-6-phosphate and D-fructofuranose-6-phosphate and is present in all living cells. However, there is interspecies variation at the level of the primary structure which sometimes produces heterogeneity at the structural and functional levels. In order to evaluate and characterize the mycobacterial PGI, the gene encoding the PGI from Mycobacterium tuberculosis H37Rv was cloned in pET-22b(+) vector and expressed in Escherichia coli. The target DNA was PCR amplified from the bacterial artificial chromosome using specific primers and cloned under the control of T7 promoter. Upon induction with IPTG, the recombinant PGI (rPGI) expressed partly as soluble protein and partly as inclusion bodies. The rPGI from the soluble fraction was purified to near homogeneity by ion-exchange chromatography. Mass spectrum analysis of the purified rPGI revealed its mass to be 61.45 kDa. The purified rPGI was enzymatically active and the specific activity was 600 U/mg protein. The K(m) of rPGI was determined to be 0.318 mM for fructose-6-phosphate and the K(i) was 0.8 mM for 6-phosphogluconate. The rPGI exhibited optimal activity at 37 degrees C and pH 9.0, and did not require mono- or divalent cations for its activity.  相似文献   

20.
A large fraction of the Mycobacterium tuberculosis genome codes for proteins of unknown function. We here report the structure of one of these proteins, Rv0130, solved to a resolution of 1.8 å. The Rv0130 monomer features a single hotdog fold composed of a highly curved β-sheet on top of a long and a short α-helix. Two monomers in turn pack to form a double-hotdog-folded homodimer, similar to a large group of enzymes that use thiol esters as substrates. Rv0130 was found to contain a highly conserved R-specific hydratase motif buried deeply between the two monomers. Our biochemical studies show that the protein is able to hydrate a short trans-2-enoyl-coenzyme A moiety with a k cat of 1.1 × 102 sec−1. The importance of the side chains of D40 and H45 for hydratase activity is demonstrated by site-directed mutagenesis. In contrast to many hotdog-folded proteins, a proline residue distorts the central helix of Rv0130. This distortion allows the creation of a long, curved tunnel, similar to the substrate-binding channels of long-chain eukaryotic hydratase 2 enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号