首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xu X W  Wu M  Wu Y H  Zhang H B 《农业工程》2007,27(8):3119-3123
Molecular diversity of halophilic archaea from Ayakekumu salt lake was investigated by the polymerase chain reaction (PCR) amplification and culture methods. 19 water samples and 15 soil samples were taken from 19 sites within Ayakekumu salt lake in winter and spring. Under aerobic culture conditions, some halophilic microorganisms were isolated by five different media. The 16S rRNA gene sequences of 62 red strains were amplified by using PCR, determined by the DNA sequencer and analyzed through the BLASTn program subsequently. Results revealed that all sequences belonged to six genera grouped within the Halobacteriaceae. Mostly 16S rRNA gene sequences related to the genera Halorubrum (47%) and Natrinema (24%) were detected. Subsequent analysis by using Shannon index indicated that cultured halophilic archaeal diversities are not significantly different between winter and spring samplings in Ayakekumu salt lake. Similarity values of haloarchaeal 16S rRNA gene sequences to known sequences were less than 97%, suggesting the presence of two novel taxa. In addition, taxonomic characteristics of Natrinema altunense and Halobiforma lacisalsi isolated from Ayakekumu salt lake had been described previously. The discovery of the novel species provides new opportunity to further examine the diversity of these halophilic microorganisms in Ayakekumu salt lake.  相似文献   

2.
Molecular diversity of halophilic archaea from Ayakekumu salt lake was investigated by the polymerase chain reaction (PCR) amplification and culture methods. 19 water samples and 15 soil samples were taken from 19 sites within Ayakekumu salt lake in winter and spring. Under aerobic culture conditions, some halophilic microorganisms were isolated by five different media. The 16S rRNA gene sequences of 62 red strains were amplified by using PCR, determined by the DNA sequencer and analyzed through the BLASTn program subsequently. Results revealed that all sequences belonged to six genera grouped within the Halobacteriaceae. Mostly 16S rRNA gene sequences related to the genera Halorubrum (47%) and Natrinema (24%) were detected. Subsequent analysis by using Shannon index indicated that cultured halophilic archaeal diversities are not significantly different between winter and spring samplings in Ayakekumu salt lake. Similarity values of haloarchaeal 16S rRNA gene sequences to known sequences were less than 97%, suggesting the presence of two novel taxa. In addition, taxonomic characteristics of Natrinema altunense and Halobiforma lacisalsi isolated from Ayakekumu salt lake had been described previously. The discovery of the novel species provides new opportunity to further examine the diversity of these halophilic microorganisms in Ayakekumu salt lake.  相似文献   

3.
A novel bop gene was described from Halobiforma lacisalsi strain AJ5T, an extremely halophilic archaeon isolated from Ayakekum Lake, China. Following six rounds of PCR amplification based on the conserved fragment of the bop gene, the complete sequence of the bop gene, including the 5′ and 3′ flanking regions of the conserved fragment, was obtained by the ligation-mediated PCR amplification (LPA) approach. The data presented provide us with further insight into the distribution of bop-like genes in the family Halobacteriaceae. This is the first example of a bop-like gene in halophiles found in the high-pH environment. Alignment and hydropathy analysis of the deduced amino acid sequence identified the conserved functional sites as well as some variations compared with other bacterio-opsins. Molecular phylogenetic analysis revealed the position of the bacterio-opsin of strain AJ5, which is closest to that of Haloterrigena sp. arg-4 with 85% identity. In the presence of all-trans retinal, recombinant Escherichia coli cells expressing the gene turned dark purple. The purple membrane from the recombinant E. coli showed maximal absorption at 540 nm.  相似文献   

4.
放射污染区古菌分离及多样性分析   总被引:1,自引:0,他引:1  
刘琴  任敏  张利莉 《微生物学通报》2014,41(7):1308-1317
【目的】研究放射污染区古菌多样性。【方法】放射污染区采集土样,采用甘油-精氨酸培养基(GJ)、甘油-天冬氨酸培养基(C1)、海藻糖-肌酸培养基(B7)、甘露醇-丙氨酸培养基(Z5)、干酪素-甘露醇培养基(CMKA)、壳聚糖-天冬酰胺培养基(F6)、甘露醇-酸水解酪蛋白培养基(GW1)、CM培养基、HP培养基和KC培养基10种分离培养基,采用梯度稀释法对古菌进行分离,将分离获得的菌株经形态特征,16S rRNA基因片段扩增及限制性内切酶酶切,选取酶切图谱中存在差异性的条带进行测序,最终通过序列比对,聚类分析,获得不同种类的古菌资源。【结果】从该土样中共获得了256株古菌,最终筛选出71株不同类型的古菌,这71株古菌均属于广古菌门,盐杆菌纲,盐杆菌目,盐杆菌科,分布于盐陆生菌属(Haloterrigena)、纳白菌属(Natrialba)、盐球菌属(Halococcus)、盐红菌属(Halorubrum)、盐长寿菌属(Halovivax)、纳线菌属(Natrinema)、盐碱球菌属(Natronococcus)、盐二型菌属(Halobiforma)、盐惰菌属(Halopiger)、盐池栖菌属(Halostagnicola)、富盐菌属(Haloferax)11个属,26个种,其中31株菌的16S rRNA基因序列与已有效发表菌株的序列相似性小于98%,Haloterrigena为该土样的优势菌属。对于分离效果较好的F6培养基采用了梯度营养成分的稀释,最终获得了19株古菌,这些菌株相互之间存在一定的差异性。【结论】本次分离获得了大量的古菌,表明放射污染区存在着较为丰富的古菌资源,其中蕴藏着多种新的物种类型,具有较大的研究价值。  相似文献   

5.
Archaeal Diversity in the Haloalkaline Lake Elmenteita in Kenya   总被引:1,自引:0,他引:1  
A non-culture approach was used to study the archaeal diversity in Lake Elmenteita, Kenya. Five different sampling points were selected randomly within the lake. Wet sediments and water samples were collected from each sampling point. In addition, dry mud cake was collected from three points where the lake had dried. DNA was extracted from these samples and the 16S rRNA genes were amplified using primers described to be Domain-specific for Archaea. Eleven clone libraries were constructed using PCR-amplified 16S rRNA genes. A total of 1,399 clones were picked and analysed via ARDRA. 170 ARDRA patterns were unique and the respective clones were selected for sequencing. 149 clones gave analysable sequences. BLAST analysis showed that 49 belong to the Domain Archaea while the others were either chimera or affiliated to eukaryotic taxa. Comparative sequence analysis of archaeal clones affiliated them to a wide range of genera. The order Halobacteriales was represented by members of the genera Natronococcus, Halovivax, Halobiforma, Halorubrum, and Halalkalicoccus. The highest percentage (46%) of the clones, however, belonged to uncultured members of the Domain Archaea in the order Halobacteriales. The results show that the archaeal diversity in the lake could be higher than previously reported.  相似文献   

6.
内蒙古锡林浩特地区嗜盐古菌多样性的研究   总被引:2,自引:1,他引:2  
从内蒙古锡林浩特地区3个不同的盐湖中共分离到165株古菌,通过ARDRA分析后得到不同的类群,从各个类群中随机选取1~2个代表菌株进行16S rDNA序列测定和系统发育的分析。结果表明分离的菌株分布在Halorubrum,Natronococcus,Natronorubrum,Haloterrigena,Halorhabdus,Halobiforma,Haloarcula,Haloferax8个属和另外两个分支中,表现了锡林浩特地区嗜盐古菌的多样性。部分菌株的16S rDNA序列同源性低于97%,可能是潜在的新属或新种,代表了该地区嗜盐古菌的独特类型。  相似文献   

7.
新疆阿牙克库木湖可培养嗜盐古菌的种群结构   总被引:2,自引:0,他引:2  
许学伟  吴敏  吴月红  张会斌 《生态学报》2007,27(8):3119-3123
从新疆南部的阿牙克库木湖采集了19个水样和15个土样,分离培养嗜盐微生物。采用PCR方法获取其中62株嗜盐古菌16S rRNA基因序列。序列分析结果表明,分离到的菌株分属6个属,占已报道嗜盐古菌属总数的27%,其中以Halorubrum和Natrinema属的菌株为优势菌株。通过Shannon多样性指数分析发现,阿牙克库木湖冬春两季嗜盐古菌多样性差异不明显。研究还发现4个嗜盐古菌新物种,表明阿牙克库木湖蕴藏着具有地域特点的嗜盐古菌资源。  相似文献   

8.
新疆两盐湖可培养嗜盐古菌多样性研究   总被引:16,自引:1,他引:15  
从新疆地区艾比盐湖和艾丁盐湖卤水及泥土样品中分离到86株嗜盐古菌。16S rRNA基因序列分析结果表明,分离自艾比湖的嗜盐古菌分别属于Haloarcula、Halobacterium、Halorubrum、Haloterrigena、Natrinema和Natronorubrum6个属的11个分类单元,而分离自艾丁湖的嗜盐古菌分别属于Haloarcula、Halobiforma、Halorubrum、Haloterrigena、Natrialba、Natrinema6个属的8个分类单元,这一结果表明艾比湖可培养嗜盐古菌生物多样性稍高于艾丁湖。基于16S rRNA基因序列的系统发育分析表明代表菌株ABH15应为Natronorubrum属的中性嗜盐古菌新种,代表菌株ABH07、ABH12、ABH17、ABH19、ABH51和AD30可能是Halobacterium、Halorubrum、Haloterrigena、Haloarcula的新成员。  相似文献   

9.
We here argue that data from comparative studies of genome size and karyotypes provide important information for planning comparative research on genome evolution. We document for 39 species of sepsids that there is a four‐fold difference in genome size (151–618 Mbp). Mapping genome sizes onto a phylogenetic hypothesis identifies that this range is the result of five genome expansions and four genome contractions that we here define as changes in genome size of more than 50 Mbp. We then generate karyotype data for 10 species and find no changes in chromosome number. The study reveals that the “Oriental” clade of sepsids is a promising system for studying genome evolution because it has experienced three genome expansion events. These events can be compared with an expansion in the “Neotropical” clade in order to reveal the mechanisms that underlie genome expansion in Sepsidae. A review of the literature on genome sizes and karyotypes reveals that they have been poorly documented in Metazoa. This means that researchers interested in the evolution of genome expansions and contractions are currently not being able to identify appropriate target taxa for genome sequencing. We thus argue for more comparative research on genome sizes and karyotypes and point out that historically species were chosen for genome sequencing for reasons not related to genome evolution (e.g. small genome size, model species status, phylogenetic position, interesting phenotypes). We believe that it is now time to use a more genome‐centric selection criterion, where species for whole genome sequencing are selected based on their importance for understanding genome evolution.  相似文献   

10.
Theoretical and practical advances in genome halving   总被引:4,自引:0,他引:4  
MOTIVATION: Duplication of an organism's entire genome is a rare but spectacular event, enabling the rapid emergence of multiple new gene functions. Over time, the parallel linkage of duplicated genes across chromosomes may be disrupted by reciprocal translocations, while the intra-chromosomal order of genes may be shuffled by inversions and transpositions. Some duplicate genes may evolve unrecognizably or be deleted. As a consequence, the only detectable signature of an ancient duplication event in a modern genome may be the presence of various chromosomal segments containing parallel paralogous genes, with each segment appearing exactly twice in the genome. The problem of reconstructing the linkage structure of an ancestral genome before duplication is known as genome halving with unordered chromosomes. RESULTS: In this paper, we derive a new upper bound on the genome halving distance that is tighter than the best known, and a new lower bound that is almost always tighter than the best known. We also define the notion of genome halving diameter, and obtain both upper and lower bounds for it. Our tighter bounds on genome halving distance yield a new algorithm for reconstructing an ancestral duplicated genome. We create a software package GenomeHalving based on this new algorithm and test it on the yeast genome, identifying a sequence of translocations for halving the yeast genome that is shorter than previously conjectured possible.  相似文献   

11.
高等植物基因组中,大部分序列为非表达序列,基因序列所占的比例很小,了解基因在基因组中的分布是研究基因组结构的一个重要方面。在美国能源部资助下,一个毛果杨无性系的基因组测序已经完成并对公众发布。杨树全基因组序列的完成,为我们了解林木基因组中基因的分布提供了一个特例。在本文中,我们利用泊松分析对杨树基因组中基因在各个染色体上的密度进行了检测,结果表明杨树基因组中各条染色体的基因含量存在显著差异。杨树全基因组测序项目揭示现代杨树基因组起源于一次古全基因组复制事件(称为杨柳科基因组复制),所以杨树基因组不同染色体间存在很大的同源复制片段。但是我们的研究显示,杨树基因组中大多数高度同源的染色体上基因的密度与染色体间的同源性没有明显关系,这说明杨柳科全基因组复制事件后,各个高度同源染色体上的基因发生了流失,且基因流失的速率是不一样的。同时本文还对近九万条毛果杨EST序列进行了比对分析,结果显示这些EST序列覆盖的基因仅占杨树基因组中基因总数的16.8%左右。EST测序虽然是发现基因的一个重要手段,但小规模EST测序对基因的覆盖度很低,所以小规模EST测序的应用价值是有限的。  相似文献   

12.
Mutational equilibrium model of genome size evolution   总被引:22,自引:0,他引:22  
The paper describes a mutational equilibrium model of genome size evolution. This model is different from both adaptive and junk DNA models of genome size evolution in that it does not assume that genome size is maintained either by positive or stabilizing selection for the optimum genome size (as in adaptive theories) or by purifying selection against too much junk DNA (as in junk DNA theories). Instead the genome size is suggested to evolve until the loss of DNA through more frequent small deletions is equal to the rate of DNA gain through more frequent long insertions. The empirical basis for this theory is the finding of a strong correlation and of a clear power-function relationship between the rate of mutational DNA loss (per bp) through small deletions and genome size in animals. Genome size scales as a negative 1.3 power function of the deletion rate per nucleotide. Such a relationship is not predicted by either adaptive or junk DNA theories. However, if genome size is maintained at equilibrium by the balance of mutational forces, this empirilical relationship can be readily accommodated. Within this framework, this finding would imply that the rate of DNA gain through large insertions scales up a quarter-power function of genome size. On this view, as genome size grows, the rate of growth through large insertions is increasing as a quarter power function of genome size and the rate of DNA loss through small deletions increases linearly, until eventually, at the stable equilibrium genome size value, rates of growth and loss equal each other. The current data also suggest that the long-term variation is genome size in animals is brought about to a significant extent by changes in the intrinsic rates of DNA loss through small deletions. Both the origin of mutational biases and the adaptive consequences of such a mode of evolution of genome size are discussed.  相似文献   

13.
Venetis C  Theologidis I  Zouros E  Rodakis GC 《Gene》2007,406(1-2):79-90
Species of the marine mussel genus Mytilus are known to contain two mitochondrial genomes, one transmitted maternally (the F genome) and the other paternally (the M genome). The two genomes have diverged by more than 20% in DNA sequence. Here we present the complete sequence of a third genome, genome C, which we found in the sperm of a Mytilus galloprovincialis male. The coding part of the new genome resembles in sequence the F genome, from which it differs by about 2% on average, but differs from the M genome by as much as the F from the M. Its major control region (CR) is more than three times larger than that of the F or the M genome and consists of repeated sequence domains of the CR of the M genome flanked by domains of the CR of the F genome. We present a sequence of events that reconstruct most parsimoniously the derivation of the C genome from the F and M genomes. The sequence consists of a duplication of CR elements of the M genome and subsequent insertion of these tandemly repeated elements in the F genome by recombination. The fact that the C genome was found as the only mitochondrial genome in the sperm of the male from which it was extracted suggests that it is transmitted paternally.  相似文献   

14.
Repetitive DNA variation and pivotal-differential evolution of wild wheats.   总被引:1,自引:0,他引:1  
Several polyploid species in the genus Triticum contain a U genome derived from the diploid T. umbellulatum. In these species, the U genome is considered to be unmodified from the diploid based on chromosome pairing analysis, and it is referred to as pivotal. The additional genome(s) are considered to be modified, and they are thus referred to as differential genomes. The M genome derived from the diploid T. comosum is found in many U genome polyploids. In this study, we cloned three repetitive DNA sequences found primarily in the U genome and two repetitive DNA sequences found primarily in the M genome. We used these to monitor variation for these sequences in a large set of species containing U and M genomes. Investigation of sympatric and allopatric accessions of polyploid species did not show repetitive DNA similarities among sympatric species. This result does not support the idea that the polyploid species are continually exchanging genetic information through introgression. However, it is also possible that repetitive DNA is not a suitable means of addressing the question of introgression. The U genomes of both diploid and polyploid U genome species were similar regarding hybridization patterns observed with U genome probes. Much more variation was found both among diploid T. comosum accessions and polyploids containing M genomes. The observed variation supports the cytogenetic evidence that the M genome is more variable than the U genome. It also raises the possibility that the differential nature of the M genome may be due to variation within the diploid T. comosum, as well as among polyploid M genome species and accessions.  相似文献   

15.
Sorting by weighted reversals, transpositions, and inverted transpositions.   总被引:1,自引:0,他引:1  
During evolution, genomes are subject to genome rearrangements that alter the ordering and orientation of genes on the chromosomes. If a genome consists of a single chromosome (like mitochondrial, chloroplast, or bacterial genomes), the biologically relevant genome rearrangements are (1) inversions--also called reversals--where a section of the genome is excised, reversed in orientation, and reinserted and (2) transpositions, where a section of the genome is excised and reinserted at a new position in the genome; if this also involves an inversion, one speaks of an inverted transposition. To reconstruct ancient events in the evolutionary history of organisms, one is interested in finding an optimal sequence of genome rearrangements that transforms a given genome into another genome. It is well known that this problem is equivalent to the problem of "sorting" a signed permutation into the identity permutation. In this paper, we provide a 1.5-approximation algorithm for sorting by weighted reversals, transpositions and inverted transpositions for biologically realistic weights.  相似文献   

16.
Infection with hepatitis delta virus (HDV) is an important cause of acute and chronic liver disease and can be rapidly fatal. Sequencing of the HDV RNA genome has revealed variability at the C-terminal end of the delta antigen reading frame. One genome type (termed the S genome) synthesizes a 24-kDa protein thought to be required for genome replication. Another genome type (termed the L genome) extends the reading frame by 19 amino acids as a result of a single base change. Replication of the S and L genomes was studied in cultured fibroblasts. While the S genome efficiently initiated genome replication, the L genome did not. Moreover, in a codelivery experiment, L genome RNA inhibited replication of the S genome. Potent trans inhibition was also observed following cotransfection of the S genome and a plasmid encoding the larger delta antigen. Mutational analysis indicated that the inhibitory activity was not a simple function of the large delta antigen reading frame's extra length. Implications for the viral life cycle, clinical infection, and potential treatment are discussed.  相似文献   

17.
One of the most complex and computationally intensive tasks of genome sequence analysis is genome assembly. Even today, few centres have the resources, in both software and hardware, to assemble a genome from the thousands or millions of individual sequences generated in a whole-genome shotgun sequencing project. With the rapid growth in the number of sequenced genomes has come an increase in the number of organisms for which two or more closely related species have been sequenced. This has created the possibility of building a comparative genome assembly algorithm, which can assemble a newly sequenced genome by mapping it onto a reference genome. We describe here a novel algorithm for comparative genome assembly that can accurately assemble a typical bacterial genome in less than four minutes on a standard desktop computer. The software is available as part of the open-source AMOS project.  相似文献   

18.
Angiosperms represent one of the key examples of evolutionary success, and their diversity dwarfs other land plants; this success has been linked, in part, to genome size and phenomena such as whole genome duplication events. However, while angiosperms exhibit a remarkable breadth of genome size, evidence linking overall genome size to diversity is equivocal, at best. Here, we show that the rates of speciation and genome size evolution are tightly correlated across land plants, and angiosperms show the highest rates for both, whereas very slow rates are seen in their comparatively species-poor sister group, the gymnosperms. No evidence is found linking overall genome size and rates of speciation. Within angiosperms, both the monocots and eudicots show the highest rates of speciation and genome size evolution, and these data suggest a potential explanation for the megadiversity of angiosperms. It is difficult to associate high rates of diversification with different types of polyploidy, but it is likely that high rates of evolution correlate with a smaller genome size after genome duplications. The diversity of angiosperms may, in part, be due to an ability to increase evolvability by benefiting from whole genome duplications, transposable elements and general genome plasticity.  相似文献   

19.
Genome phylogenetic analysis based on extended gene contents   总被引:1,自引:0,他引:1  
With the rapid growth of entire genome data, whole-genome approaches such as gene content become popular for genome phylogeny inference, including the tree of life. However, the underlying model for genome evolution is unclear, and the proposed (ad hoc) genome distance measure may violate the additivity. In this article, we formulate a stochastic framework for genome evolution, which provides a basis for defining an additive genome distance. However, we show that it is difficult to utilize the typical gene content data-i.e., the presence or absence of gene families across genomes-to estimate the genome distance. We solve this problem by introducing the concept of extended gene content; that is, the status of a gene family in a given genome could be absence, presence as single copy, or presence as duplicates, any of which can be used to estimate the genome distance and phylogenetic inference. Computer simulation shows that the new tree-making method is efficient, consistent, and fairly robust. The example of 35 microbial complete genomes demonstrates that it is useful not only to study the universal tree of life but also to explore the evolutionary pattern of genomes.  相似文献   

20.
BACKGROUND: In studies looking at individual polyploid species, the most common patterns of genomic change are that either genome size in the polyploid is additive (i.e. the sum of parental genome donors) or there is evidence of genome downsizing. Reports showing an increase in genome size are rare. In a large-scale analysis of 3008 species, genome downsizing was shown to be a widespread biological response to polyploidy. Polyploidy in the genus Nicotiana (Solanaceae) is common with approx. 40 % of the approx. 75 species being allotetraploid. Recent advances in understanding phylogenetic relationships of Nicotiana species and dating polyploid formation enable a temporal dimension to be added to the analysis of genome size evolution in these polyploids. METHODS: Genome sizes were measured in 18 species of Nicotiana (nine diploids and nine polyploids) ranging in age from <200,000 years to approx. 4.5 Myr old, to determine the direction and extent of genome size change following polyploidy. These data were combined with data from genomic in situ hybridization and increasing amounts of information on sequence composition in Nicotiana to provide insights into the molecular basis of genome size changes. KEY RESULTS AND CONCLUSIONS: By comparing the expected genome size of the polyploid (based on summing the genome size of species identified as either a parent or most closely related to the diploid progenitors) with the observed genome size, four polyploids showed genome downsizing and five showed increases. There was no discernable pattern in the direction of genome size change with age of polyploids, although with increasing age the amount of genome size change increased. In older polyploids (approx. 4.5 million years old) the increase in genome size was associated with loss of detectable genomic in situ hybridization signal, whereas some hybridization signal was still detected in species exhibiting genome downsizing. The possible significance of these results is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号