首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alternative splicing enhances proteome diversity and modulates cancer-associated proteins. To identify tissue- and tumor-specific alternative splicing, we used the GeneChip Human Exon 1.0 ST Array to measure whole-genome exon expression in 102 normal and cancer tissue samples of different stages from colon, urinary bladder, and prostate. We identified 2069 candidate alternative splicing events between normal tissue samples from colon, bladder, and prostate and selected 15 splicing events for RT-PCR validation, 10 of which were successfully validated by RT-PCR and sequencing. Furthermore 23, 19, and 18 candidate tumor-specific splicing alterations in colon, bladder, and prostate, respectively, were selected for RT-PCR validation on an independent set of 81 normal and tumor tissue samples. In total, seven genes with tumor-specific splice variants were identified (ACTN1, CALD1, COL6A3, LRRFIP2, PIK4CB, TPM1, and VCL). The validated tumor-specific splicing alterations were highly consistent, enabling clear separation of normal and cancer samples and in some cases even of different tumor stages. A subset of the tumor-specific splicing alterations (ACTN1, CALD1, and VCL) was found in all three organs and may represent general cancer-related splicing events. In silico protein predictions suggest that the identified cancer-specific splice variants encode proteins with potentially altered functions, indicating that they may be involved in pathogenesis and hence represent novel therapeutic targets. In conclusion, we identified and validated alternative splicing between normal tissue samples from colon, bladder, and prostate in addition to cancer-specific splicing events in colon, bladder, and prostate cancer that may have diagnostic and prognostic implications.  相似文献   

2.
3.
4.
5.
There is ample evidence that deregulation of apoptosis results in the development, progression, and/or maintenance of cancer. Since many apoptotic regulatory genes (e.g. bcl-x) code for alternatively spliced protein variants with opposing functions, the manipulation of alternative splicing presents a unique way of regulating the apoptotic response. Here we have targeted oligonucleotides antisense to the 5'-splice site of bcl-x(L), an anti-apoptotic gene that is overexpressed in various cancers, and shifted the splicing pattern of Bcl-x pre-mRNA from Bcl-x(L) to Bcl-x(S), a pro-apoptotic splice variant. This approach induced significant apoptosis in PC-3 prostate cancer cells. In contrast, the same oligonucleotide treatment elicited a much weaker apoptotic response in MCF-7 breast cancer cells. Moreover, although the shift in Bcl-x pre-mRNA splicing inhibited colony formation in both cell lines, this effect was much less pronounced in MCF-7 cells. These differences in responses to oligonucleotide treatment were analyzed in the context of expression of Bcl-x(L), Bcl-x(S), and Bcl-2 proteins. The results indicate that despite the presence of Bcl-x pre-mRNA in a number of cell types, the effects of modification of its splicing by antisense oligonucleotides vary depending on the expression profile of the treated cells.  相似文献   

6.
7.
8.
9.
10.
11.
Parkin Transcript Variants in Rat and Human Brain   总被引:3,自引:0,他引:3  
Alternative splicing has an important role in expanding protein diversity. We have identified complementary DNA species from adult rat and fetal human brain encoding seven new splice variants of parkin, a gene mutated in autosomal recessive juvenile parkinsonism (ARJP). Alternative splicing affects almost all previously characterized exons, plus 3 new exons of 72, 156, and 180 nucleotides. This creates the potential to express hundreds of different isoforms. The encoded parkin isoforms have different amino acid composition, post-translational modifications, and, most important, molecular architectures. They diverge for the presence or absence of the ubiquitin-like domain, one or two C3HC4 ring fingers, the in-between ring fingers (IBR) domain, and a thiol proteases active site, which has not been previously characterized. Distinct expression patterns occur in primary cultures of neuronal and glial cells. Extensive splicing of parkin produces regional and structural diversity and may have important implications for the pathogenetic mechanisms underlying ARJP.  相似文献   

12.
Ectopic modulators of alternative splicing are important tools to study the function of splice variants and for correcting mis-splicing events that cause human diseases. Such modulators can be bifunctional oligonucleotides made of an antisense portion that determines target specificity, and a non-hybridizing tail that recruits proteins or RNA/protein complexes that affect splice site selection (TOSS and TOES, respectively, for targeted oligonucleotide silencer of splicing and targeted oligonucleotide enhancer of splicing). The use of TOSS and TOES has been restricted to a handful of targets. To generalize the applicability and demonstrate the robustness of TOSS, we have tested this approach on more than 50 alternative splicing events. Moreover, we have developed an algorithm that can design active TOSS with a success rate of 80%. To produce bifunctional oligonucleotides capable of stimulating splicing, we built on the observation that binding sites for TDP-43 can stimulate splicing and improve U1 snRNP binding when inserted downstream from 5′ splice sites. A TOES designed to recruit TDP-43 improved exon 7 inclusion in SMN2. Overall, our study shows that bifunctional oligonucleotides can redirect splicing on a variety of genes, justifying their inclusion in the molecular arsenal that aims to alter the production of splice variants.  相似文献   

13.
Cloning and identification of two novel splice variants of human PD-L2   总被引:3,自引:0,他引:3  
T cell activation is dependent upon signals deliveredthrough the antigen-specific T cell receptors and costimula-tory molecules [1,2]. The B7 family of costimulatory mol-ecules provides signals that are critical for both stimula-ting and inhibiting T cell…  相似文献   

14.
Alternative pre-mRNA splicing leads to distinct products of gene expression in development and disease. Antagonistic splice variants of genes involved in differentiation, apoptosis, invasion and metastasis often exist in a delicate equilibrium that is found to be perturbed in tumours. In several recent examples, splice variants that are overexpressed in cancer are expressed as hyper-oncogenic proteins, which often correlate with poor prognosis, thus suggesting improved diagnosis and follow up treatment. Global gene expression technologies are just beginning to decipher the interplay between alternatively spliced isoforms and protein-splicing factors that will lead to identification of the mutations in these trans-acting factors responsible for pathogenic alternative splicing in cancer.  相似文献   

15.
16.
Targeting splicing by antisense oligonucleotides allows RNA modifications that are not possible with RNA interference or other antisense techniques that destine the RNA for destruction. By changing the ratio of naturally occurring splice variants the expression of mRNA is modulated. By preventing the use of an aberrant splice site created by a mutation and enforcing re-selection of correct splice sites the RNA is repaired. Antisense induced skipping of the exon that carries a nonsense mutation remodels the mRNA and restores the reading frame of the defective protein. All of the above approaches have clinical applications. Modulation of splice variants is particularly important since close to 60% of all genes code for alternatively spliced pre-mRNA.  相似文献   

17.
The munc18-1 gene encodes two splice-variants that vary at the C-terminus of the protein and are expressed at different levels in different regions of the adult mammalian brain. Here, we investigated the expression pattern of these splice variants within the brainstem and tested whether they are functionally different. Munc18-1a is expressed in specific nuclei of the brainstem including the LRN, VII and SOC, while Munc18-1b expression is relatively low/absent in these regions. Furthermore, Munc18-1a is the major splice variant in the Calyx of Held. Synaptic transmission was analyzed in autaptic hippocampal munc18-1 KO neurons re-expressing either Munc18-1a or Munc18-1b. The two splice variants supported synaptic transmission to a similar extent, but Munc18-1b was slightly more potent in sustaining synchronous release during high frequency stimulation. Our data suggest that alternative splicing of Munc18-1 support synaptic transmission to a similar extent, but could modulate presynaptic short-term plasticity.  相似文献   

18.
Information theory-based methods have been shown to be sensitive and specific for predicting and quantifying the effects of non-coding mutations in Mendelian diseases. We present the Shannon pipeline software for genome-scale mutation analysis and provide evidence that the software predicts variants affecting mRNA splicing. Individual information contents (in bits) of reference and variant splice sites are compared and significant differences are annotated and prioritized. The software has been implemented for CLC-Bio Genomics platform. Annotation indicates the context of novel mutations as well as common and rare SNPs with splicing effects. Potential natural and cryptic mRNA splicing variants are identified, and null mutations are distinguished from leaky mutations. Mutations and rare SNPs were predicted in genomes of three cancer cell lines (U2OS, U251 and A431), which were supported by expression analyses. After filtering, tractable numbers of potentially deleterious variants are predicted by the software, suitable for further laboratory investigation. In these cell lines, novel functional variants comprised 6-17 inactivating mutations, 1-5 leaky mutations and 6-13 cryptic splicing mutations. Predicted effects were validated by RNA-seq analysis of the three aforementioned cancer cell lines, and expression microarray analysis of SNPs in HapMap cell lines.  相似文献   

19.
20.
The evolving roles of alternative splicing   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号