首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Summary Nagumo's nerve conduction equation has travelling wave solutions of pulse type and periodic wave type. We consider the stability of the latter ones. We denote byL(c) the minimum spatial period of a periodic travelling wave solution whose propagation speed isc. It is shown that this travelling wave solution is unstable ifL′(c)<0.  相似文献   

3.
Gliomas are very aggressive brain tumours, in which tumour cells gain the ability to penetrate the surrounding normal tissue. The invasion mechanisms of this type of tumour remain to be elucidated. Our work is motivated by the migration/proliferation dichotomy (go-or-grow) hypothesis, i.e. the antagonistic migratory and proliferating cellular behaviours in a cell population, which may play a central role in these tumours. In this paper, we formulate a simple go-or-grow model to investigate the dynamics of a population of glioma cells for which the switch from a migratory to a proliferating phenotype (and vice versa) depends on the local cell density. The model consists of two reaction-diffusion equations describing cell migration, proliferation and a phenotypic switch. We use a combination of numerical and analytical techniques to characterize the development of spatio-temporal instabilities and travelling wave solutions generated by our model. We demonstrate that the density-dependent go-or-grow mechanism can produce complex dynamics similar to those associated with tumour heterogeneity and invasion.  相似文献   

4.
We formulate and analyse a 1D model for the spatial distribution of actin density at the leading edge of a motile cell. The model incorporates nucleation, capping, growth and decay of actin filaments, as well as retrograde flow of the actin meshwork and known parameter values based on the literature. Using a simplified geometry, and reasonable assumptions about the biochemical processes, we derive PDEs for the density of actin filaments and their tips. Analytic travelling wave solutions are used to predict how the speed of the cell depends on rates of nucleation, capping, polymerization and membrane resistance. Analysis and simulations agree with experimental profiles for measured actin distributions. Extended versions of the model are studied numerically. We find that our model produces stable travelling wave solutions with reasonable cell speeds. Increasing the rate of nucleation of filaments (by the actin related protein Arp2/3) or the rate of actin polymerization leads to faster cell speed, whereas increasing the rate of capping or the membrane resistance reduces cell speed. We consider several variants of nucleation (spontaneous, tip, and side branching) and find best agreement with experimentally measured spatial profiles of filament and tip density in the side branching case.  相似文献   

5.
Early development and quorum sensing in bacterial biofilms   总被引:3,自引:0,他引:3  
 We develop mathematical models to examine the formation, growth and quorum sensing activity of bacterial biofilms. The growth aspects of the model are based on the assumption of a continuum of bacterial cells whose growth generates movement, within the developing biofilm, described by a velocity field. A model proposed in Ward et al. (2001) to describe quorum sensing, a process by which bacteria monitor their own population density by the use of quorum sensing molecules (QSMs), is coupled with the growth model. The resulting system of nonlinear partial differential equations is solved numerically, revealing results which are qualitatively consistent with experimental ones. Analytical solutions derived by assuming uniform initial conditions demonstrate that, for large time, a biofilm grows algebraically with time; criteria for linear growth of the biofilm biomass, consistent with experimental data, are established. The analysis reveals, for a biologically realistic limit, the existence of a bifurcation between non-active and active quorum sensing in the biofilm. The model also predicts that travelling waves of quorum sensing behaviour can occur within a certain time frame; while the travelling wave analysis reveals a range of possible travelling wave speeds, numerical solutions suggest that the minimum wave speed, determined by linearisation, is realised for a wide class of initial conditions. Received: 10 February 2002 / Revised version: 29 October 2002 / Published online: 19 March 2003 Key words or phrases: Bacterial biofilm – Quorum sensing – Mathematical modelling – Numerical solution – Asymptotic analysis – Travelling wave analysis  相似文献   

6.
Mathematical models of bacterial populations are often written as systems of partial differential equations for the densities of bacteria and concentrations of extracellular (signal) chemicals. This approach has been employed since the seminal work of Keller and Segel in the 1970s (Keller and Segel, J. Theor. Biol. 30:235–248, 1971). The system has been shown to permit travelling wave solutions which correspond to travelling band formation in bacterial colonies, yet only under specific criteria, such as a singularity in the chemotactic sensitivity function as the signal approaches zero. Such a singularity generates infinite macroscopic velocities which are biologically unrealistic. In this paper, we formulate a model that takes into consideration relevant details of the intracellular processes while avoiding the singularity in the chemotactic sensitivity. We prove the global existence of solutions and then show the existence of travelling wave solutions both numerically and analytically.  相似文献   

7.
We establish the existence of travelling wave solutions for two reaction diffusion systems based on the Lotka-Volterra model for predator and prey interactions. For simplicity, we consider only 1 space dimension. The waves are of transition front type, analogous to the travelling wave solutions discussed by Fisher and Kolmogorov et al. for a scalar reaction diffusion equation. The waves discussed here are not necessarily monotone. For any speed c there is a travelling wave solution of transition front type. For one of the systems discussed here, there is a distinguished speed c* dividing the waves into two types, waves of speed c < c* being one type, waves of speed c ? c* being of the other type. We present numerical evidence that for this system the wave of speed c* is stable, and that c* is an asymptotic speed of propagation in some sense. For the other system, waves of all speeds are in some sense stable. The proof of existence uses a shooting argument and a Lyapunov function. We also discuss some possible biological implications of the existence of these waves.  相似文献   

8.

To understand the effects that the climate change has on the evolution of species as well as the genetic consequences, we analyze an integrodifference equation (IDE) models for a reproducing and dispersing population in a spatio-temporal heterogeneous environment described by a shifting climate envelope. Our analysis on the IDE focuses on the persistence criterion, travelling wave solutions, and the inside dynamics. First, the persistence criterion, characterizing the global dynamics of the IDE, is established in terms of the basic reproduction number. In the case of persistence, a unique travelling wave is found to govern the global dynamics. The effects of the size and the shifting speed of the climate envelope on the basic reproduction number, and hence, on the persistence criterion, are also investigated. In particular, the critical domain size and the critical shifting speed are found in certain cases. Numerical simulations are performed to complement the theoretical results. In the case of persistence, we separate the travelling wave and general solutions into spatially distinct neutral fractions to study the inside dynamics. It is shown that each neutral genetic fraction rearranges itself spatially so as to asymptotically achieve the profile of the travelling wave. To measure the genetic diversity of the population density we calculate the Shannon diversity index and related indices, and use these to illustrate how diversity changes with underlying parameters.

  相似文献   

9.
Summary Nagumo's nerve conduction equation has a one-parameter family of spatially periodic travelling wave solutions. First, we prove the existence of these solutions by using a topological method. (There are some exceptional cases in which this method cannot be applied in showing the existence.) A periodic travelling wave solution corresponds to a closed orbit of a third-order dynamical system. The Poincaré index of the closed orbit is determined as a direct consequence of the proof of the existence. Second, we prove that the periodic travelling wave solution is unstable if the Poincaré index of the corresponding closed orbit is + 1. By using this result, together with the result of the author's previous paper, it is concluded that the slow periodic travelling wave solutions are always unstable. Third, we consider the stability of the fast periodic travelling wave solutions. We denote by L(c) the spatial period of the travelling wave solution with the propagation speed c. It is shown that the fast solution is unstable if its period is close to Lmin, the minimum of L(c).  相似文献   

10.
In the vertebrate brain excitatory synaptic contacts typically occur on the tiny evaginations of neuron dendritic surface known as dendritic spines. There is clear evidence that spine heads are endowed with voltage-dependent excitable channels and that action potentials invade spines. Computational models are being increasingly used to gain insight into the functional significance of a spine with an excitable membrane. The spike-diffuse-spike (SDS) model is one such model that admits to a relatively straightforward mathematical analysis. In this paper we demonstrate that not only can the SDS model support solitary travelling pulses, already observed numerically in more detailed biophysical models, but that it has periodic travelling wave solutions. The exact mathematical treatment of periodic travelling waves in the SDS model is used, within a kinematic framework, to predict the existence of connections between two periodic spike trains of different interspike interval. The associated wave front in the sequence of interspike intervals travels with a constant velocity without degradation of shape, and might therefore be used for the robust encoding of information.  相似文献   

11.
New models for seed dispersal and competition between plant species are formulated and analyzed. The models are integrodifference equations, discrete in time and continuous in space, and have applications to annual and perennial species. The spread or invasion of a single plant species into a geographic region is investigated by studying the travelling wave solutions of these equations. Travelling wave solutions are shown to exist in the single-species models and are compared numerically. The asymptotic wave speed is calculated for various parameter values. The single-species integrodifference equations are extended to a model for two competing annual plants. Competition in the two-species model is based on a difference equation model developed by Pakes and Maller [26]. The two-species model with competition and dispersal yields a system of integrodifference equations. The effects of competition on the travelling wave solutions of invading plant species is investigated numerically.  相似文献   

12.
The use of ion mobility mass spectrometry has grown rapidly over the last two decades. This powerful analytical platform now forms an attractive prospect for comprehensive analysis of many different molecular species, including chemically complex biological molecules. This paper describes the application of IM-MS to the study of peptides. We focus on three different ion mobility devices that are most frequently found in tandem with mass spectrometers. These are instruments using linear drift tubes (LDT), those using travelling wave ion guides (TWIGS) and those employing high field asymmetric ion mobility spectrometry (FAIMS). Each technique is described. Examples are given on the use of IM-MS for the determination of peptide structure, the study of peptides that form amyloid fibrils, and the study of complex peptide mixtures in proteomic investigations. We describe and comment on the methodologies used and the outlook for this developing analytical technique.  相似文献   

13.
Summary After discussing some general properties which we think desirable in a nerve axon model, we consider a system first proposed by FitzHugh. We show that, assuming the existence of travelling wave solutions, the speed of propagation is bounded above and below.  相似文献   

14.
 The non-linear structure of deep, stochastic, gyrotactic bioconvection is explored. A linear analysis is reviewed and a weakly non-linear analysis justifies its application by revealing the supercritical nature of the bifurcation. An asymptotic expansion is used to derive systems of partial differential equations for long plume structures which vary slowly with depth. Steady state and travelling wave solutions are found for the first order system of partial differential equations and the second order system is manipulated to calculate the speed of vertically travelling pulses. Implications of the results and possibilities of experimental validation are discussed. Received: 26 May 1997 / Revised version: 10 May 1998  相似文献   

15.
. We explore several hypotheses for the swarming behaviour in locusts, with a goal of understanding how swarm cohesion can be maintained by the huge population of insects (up to 109 individuals) over long distances (up to thousands of miles) and long periods of time (over a week). The mathematical models that correspond to such hypotheses are generally partial differential equations that can be analysed for travelling wave solutions. The nature of a swarm (and the fact that it contains a finite number of individuals) mandates that we seek travelling band (pulse) solutions. However, most biologically reasonable models fail to produce such ideal behaviour unless unusual and unrealistic assumptions are made. The failure of such models, general difficulties encountered with similar models of other migratory phenomena, and possible approaches to alleviate these problems are described and discussed. Received: 25 April 1997 / Revised version: 14 September 1997  相似文献   

16.
The stimuli for the increase in epidermal mitosis during wound healing are not fully known. We construct a mathematical model which suggests that biochemical regulation of mitosis is fundamental to the process, and that a single chemical with a simple regulatory effect can account for the healing of circular epidermal wounds. The numerical results of the model compare well with experimental data. We investigate the model analytically by making biologically relevant approximations. We then obtain travelling wave solutions which provide information about the accuracy of these approximations and clarify the roles of the various model parameters.  相似文献   

17.
Hybrid models of chemotaxis combine agent-based models of cells with partial differential equation models of extracellular chemical signals. In this paper, travelling wave properties of hybrid models of bacterial chemotaxis are investigated. Bacteria are modelled using an agent-based (individual-based) approach with internal dynamics describing signal transduction. In addition to the chemotactic behaviour of the bacteria, the individual-based model also includes cell proliferation and death. Cells consume the extracellular nutrient field (chemoattractant), which is modelled using a partial differential equation. Mesoscopic and macroscopic equations representing the behaviour of the hybrid model are derived and the existence of travelling wave solutions for these models is established. It is shown that cell proliferation is necessary for the existence of non-transient (stationary) travelling waves in hybrid models. Additionally, a numerical comparison between the wave speeds of the continuum models and the hybrid models shows good agreement in the case of weak chemotaxis and qualitative agreement for the strong chemotaxis case. In the case of slow cell adaptation, we detect oscillating behaviour of the wave, which cannot be explained by mean-field approximations.  相似文献   

18.
In this paper we study the nonlinear age-structured model of a polycyclic two-phase population dynamics including delayed effect of population density growth on the mortality. Both phases are modelled as a system of initial boundary values problem for semi-linear transport equation with delay and initial problem for nonlinear delay ODE. The obtained system is studied both theoretically and numerically. Three different regimes of population dynamics for asymptotically stable states of autonomous systems are obtained in numerical experiments for the different initial values of population density. The quasi-periodical travelling wave solutions are studied numerically for the autonomous system with the different values of time delays and for the system with oscillating death rate and birth modulus. In both cases it is observed three types of travelling wave solutions: harmonic oscillations, pulse sequence and single pulse.  相似文献   

19.
Yang J  Liang S  Zhang Y 《PloS one》2011,6(6):e21128
This paper is concerned with the existence of travelling waves to a SIR epidemic model with nonlinear incidence rate, spatial diffusion and time delay. By analyzing the corresponding characteristic equations, the local stability of a disease-free steady state and an endemic steady state to this system under homogeneous Neumann boundary conditions is discussed. By using the cross iteration method and the Schauder's fixed point theorem, we reduce the existence of travelling waves to the existence of a pair of upper-lower solutions. By constructing a pair of upper-lower solutions, we derive the existence of a travelling wave connecting the disease-free steady state and the endemic steady state. Numerical simulations are carried out to illustrate the main results.  相似文献   

20.
In this paper we adapt an avascular tumour growth model to compare the effects of drug application on multicell spheroids and on monolayer cultures. The model for the tumour is based on nutrient driven growth of a continuum of live cells, whose birth and death generates volume changes described by a velocity field. The drug is modelled as an externally applied, diffusible material capable of killing cells, both linear and Michaelis-Menten kinetics for drug action on cells being studied. Numerical solutions of the resulting system of partial differential equations for the multicell spheroid case are compared with closed form solutions of the monolayer case, particularly with respect to the effects on the cell kill of the drug dosage and of the duration of its application. The results show an enhanced survival rate in multicell spheroids compared to monolayer cultures, consistent with experimental observations, and indicate that the key factor determining this is drug penetration. An analysis of the large time tumour spheroid response to a continuously applied drug at fixed concentration reveals up to three stable large time solutions, namely the trivial solution (i.e. a dead tumour), a travelling wave (continuously growing tumour) and a sublinear growth case in which cells reach a pseudo-steady-state in the core. Each of these possibilities is formulated and studied, with the bifurcations between them being discussed. Numerical solutions reveal that the pseudo-steady-state solutions persist to a significantly higher drug dose than travelling wave solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号