首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In animals and plants, many cell types switch from mitotic cycles to endoreduplication cycles during differentiation. Little is known about the way in which the number of endoreduplication cycles is controlled in such endopolyploid cells. In this study we have characterized at the molecular level three mutations in the Arabidopsis gene KAKTUS ( KAK), which were previously shown specifically to repress endoreduplication in trichomes. We show that KAK is also involved in the regulation of the number of endoreduplication cycles in various organs that are devoid of trichomes. KAK encodes a protein with sequence similarity to HECT domain proteins. As this class of proteins is known to be involved in ubiquitin-mediated protein degradation, our finding suggests that the number of endoreduplication cycles that occur in several cell types is controlled by this pathway. The KAK gene defines a monophylogenetic subgroup of HECT proteins that also contain Armadillo-like repeats.  相似文献   

2.
Summary Somatic polyploidy of species-specific and tissue-specific degrees occurs in almost all plant species studied so far, but nearly nothing is known about the control mechanisms switching the mitotic cycle to an endoreduplication cycle. In order to search for a possible role of the cdc2 kinase, cell suspension cultures of the Runner bean, Phaseolus coccineus (Leguminosae) were treated with K-252a, an inhibitor of protein kinase activity. The treatment resulted in continuous cell cycles without mitosis, and hence induced polyploidy levels up to 2048C. It is, therefore, suggested that phosphorylation of a protein kinase, probably of the cell cycle-important p34cdc2 type, is involved in the control of endoreduplication.  相似文献   

3.
4.
Seo E  Yeom SI  Jo S  Jeong H  Kang BC  Choi D 《Molecules and cells》2012,33(4):415-422
Secreted proteins are known to have multiple roles in plant development, metabolism, and stress response. In a previous study to understand the roles of secreted proteins, Capsicum annuum secreted proteins (CaS) were isolated by yeast secretion trap. Among the secreted proteins, we further characterized Capsicum annuum senescence-delaying 1 (CaSD1), a gene encoding a novel secreted protein that is present only in the genus Capsicum. The deduced CaSD1 contains multiple repeats of the amino acid sequence KPPIHNHKPTDYDRS. Interestingly, the number of repeats varied among cultivars and species in the Capsicum genus. CaSD1 is constitutively expressed in roots, and Agrobacterium-mediated transient overexpression of CaSD1 in Nicotiana benthamiana leaves resulted in delayed senescence with a dramatically increased number of trichomes and enlarged epidermal cells. Furthermore, senescence- and cell division-related genes were differentially regulated by CaSD1-overexpressing plants. These observations imply that the pepper-specific cell wall protein CaSD1 plays roles in plant growth and development by regulating cell division and differentiation.  相似文献   

5.
We describe a new class of reagents for identifying substrates, adaptors, and regulators of HECT and RING E3s. UBAITs (Ub iquitin‐A ctivated I nteraction T raps) are E3‐ubiquitin fusion proteins and, in an E1‐ and E2‐dependent manner, the C‐terminal ubiquitin moiety forms an amide linkage to proteins that interact with the E3, enabling covalent co‐purification of the E3 with partner proteins. We designed UBAITs for both HECT (Rsp5, Itch) and RING (Psh1, RNF126, RNF168) E3s. For HECT E3s, trapping of interacting proteins occurred in vitro either through an E3 thioester‐linked lariat intermediate or through an E2 thioester intermediate, and both WT and active‐site mutant UBAITs trapped known interacting proteins in yeast and human cells. Yeast Psh1 and human RNF126 and RNF168 UBAITs also trapped known interacting proteins when expressed in cells. Human RNF168 is a key mediator of ubiquitin signaling that promotes DNA double‐strand break repair. Using the RNF168 UBAIT, we identify H2AZ—a histone protein involved in DNA repair—as a new target of this E3 ligase. These results demonstrate that UBAITs represent powerful tools for profiling a wide range of ubiquitin ligases.  相似文献   

6.
The ubiquitin/26S proteasome pathway plays a central role in the degradation of short-lived regulatory proteins to control many cellular events. The Arabidopsis knockout mutant rpt2a, which contains a defect in the AtRPT2a subunit of the 26S proteasome regulatory particle, showed enlarged leaves caused by increased cell size that correlated with increased ploidy caused by extended endoreduplication. To clarify the role of RPT2a in endoreduplication control, trichome development was genetically examined in further detail. RHL1 and GL3 encode proteins that have a role in the positive regulation of endocycle progression in trichomes. The rhl1 mutants are stalled at 8C and have trichomes with only a single branch. The rpt2a mutation did not alter the rhl1 mutant phenotype, and trichomes of double rpt2a rhl1 mutants resembled that of single rhl1 mutants. On the other hand, the rpt2a mutation suppressed the gl3 phenotype (stalled at 16C, two trichome branches), and trichomes of the double rpt2a gl3 mutant resembled those of the wild type (WT) plants. Together, these data suggest that RPT2a functions to negatively regulate endocycle progression following completion of the third endoreduplication step mediated by RHL1 (8C–16C).  相似文献   

7.
Potential role of the rice OsCCS52A gene in endoreduplication   总被引:2,自引:0,他引:2  
Su'udi M  Cha JY  Jung MH  Ermawati N  Han CD  Kim MG  Woo YM  Son D 《Planta》2012,235(2):387-397
In eukaryotes, the cell cycle consists of four distinct phases: G1, S, G2 and M. In certain condition, the cells skip M-phase and undergo endoreduplication. Endoreduplication, occurring during a modified cell cycle, duplicates the entire genome without being followed by M-phase. A cycle of endoreduplication is common in most of the differentiated cells of plant vegetative tissues and it occurs extensively in cereal endosperm cells. Endoreduplication occurs when CDK/Cyclin complex low or inactive caused by ubiquitin-mediated degradation by APC and their activators. In this study, rice cell cycle switch 52 A (OsCCS52A), an APC activator, is functionally characterized using the reverse genetic approach. In rice, OsCCS52A is highly expressed in seedlings, flowers, immature panicles and 15 DAP kernels. Localization studies revealed that OsCCS52A is a nuclear protein. OsCCS52A interacts with OsCdc16 in yeast. In addition, overexpression of OsCCS52A inhibits mitotic cell division and induces endoreduplication and cell elongation in fission yeast. The homozygous mutant exhibits dwarfism and smaller seeds. Further analysis demonstrated that endoreduplication cycles in the endosperm of mutant seeds were disturbed, evidenced by reduced nuclear and cell sizes. Taken together, these results suggest that OsCCS52A is involved in maintaining normal seed size formation by mediating the exit from mitotic cell division to enter the endoreduplication cycles in rice endosperm.  相似文献   

8.
Cell differentiation is generally tightly coordinated with the cell cycle, typically resulting in a nondividing cell with a unique differentiated morphology. The unicellular trichomes of Arabidopsis are a well-established model for the study of plant cell differentiation. Here, we describe a new genetic locus, SIAMESE (SIM), required for coordinating cell division and cell differentiation during the development of Arabidopsis trichomes (epidermal hairs). A recessive mutation in the sim locus on chromosome 5 results in clusters of adjacent trichomes that appeared to be morphologically identical 'twins'. Upon closer inspection, the sim mutant was found to produce multicellular trichomes in contrast to the unicellular trichomes produced by wild-type (WT) plants. Mutant trichomes consisting of up to 15 cells have been observed. Scanning electron microscopy of developing sim trichomes suggests that the cell divisions occur very early in the development of mutant trichomes. WT trichome nuclei continue to replicate their DNA after mitosis and cytokinesis have ceased, and as a consequence have a DNA content much greater than 2C. This phenomenon is known as endoreduplication. Individual nuclei of sim trichomes have a reduced level of endoreduplication relative to WT trichome nuclei. Endoreduplication is also reduced in dark-grown sim hypocotyls relative to WT, but not in light-grown hypocotyls. Double mutants of sim with either of two other mutants affecting endoreduplication, triptychon (try) and glabra3 (gl3) are consistent with a function for SIM in endoreduplication. SIM may function as a repressor of mitosis in the endoreduplication cell cycle. Additionally, the relatively normal morphology of multicellular sim trichomes indicates that trichome morphogenesis can occur relatively normally even when the trichome precursor cell continues to divide. The sim mutant phenotype also has implications for the evolution of multicellular trichomes.  相似文献   

9.
10.
Endoreduplication is a developmental process that is unique to plants and occurs in all plants. The present study aimed to assess endoreduplication in various explant tissues and regenerated somatic embryos of Doritaenopsis. We further investigated the effects of light quality on endoreduplication and somatic embryo proliferation. To this end, we studied endoreduplication in leaves and root tips from regenerated plantlets and somatic embryos and in developing somatic embryos under 4 types of lighting conditions: red light, red + far-red light, red + blue light, and white light. We found that the degree of endoreduplication varied in different explants, and that the choice of explants used also influenced the ploidy levels of the newly regenerated somatic embryos. The DNA content of the leaf (2C–8C) was less than that of the root tip (2C–16C) and somatic embryo (2C–64C). In terms of light quality, the combination of red and far-red light produced the highest number of somatic embryos, while maintaining a low degree of endoreduplication. The data obtained indicate that this light combination stimulates somatic embryogenesis in Doritaenopsis and may exert some control on endoreduplication during cell division. These findings can be applied to achieve a reduction in somaclonal variations for the purpose of mass proliferation and genetic improvement.  相似文献   

11.
John A. Bryant 《Plant biosystems》2013,147(4-6):855-863
Abstract

The initiation of DNA replication is a key step in the cell division cycle and in DNA endoreduplication. Initiation of replication takes place at specific places in chromosomes known as replication origins. These are subject to temporal regulation within the cell cycle and may also be regulated as a function of plant development. In yeast, replication origins are recognised and bound by three different groups of proteins at different stages of the cell cycle. Of these, the MCM proteins are the most likely to be involved in activating the origins in order to facilitate initiation. MCM-like proteins also occur in plants, but have not been characterised in detail. Other proteins which bind to origins have been identified, as has a protein with a strong affinity for ds-ss junctions in DNA molecules.  相似文献   

12.
The ability to express tightly controlled amounts of endogenous and recombinant proteins in plant cells is an essential tool for research and biotechnology. Here, the inducibility of the soybean heat-shock Gmhsp17.3B promoter was addressed in the moss Physcomitrella patens, using β-glucuronidase (GUS) and an F-actin marker (GFP-talin) as reporter proteins. In stably transformed moss lines, Gmhsp17.3B-driven GUS expression was extremely low at 25 °C. In contrast, a short non-damaging heat-treatment at 38 °C rapidly induced reporter expression over three orders of magnitude, enabling GUS accumulation and the labelling of F-actin cytoskeleton in all cell types and tissues. Induction levels were tightly proportional to the temperature and duration of the heat treatment, allowing fine-tuning of protein expression. Repeated heating/cooling cycles led to the massive GUS accumulation, up to 2.3% of the total soluble proteins. The anti-inflammatory drug acetyl salicylic acid (ASA) and the membrane-fluidiser benzyl alcohol (BA) also induced GUS expression at 25 °C, allowing the production of recombinant proteins without heat-treatment. The Gmhsp17.3B promoter thus provides a reliable versatile conditional promoter for the controlled expression of recombinant proteins in the moss P. patens.  相似文献   

13.
14.
Plant cells frequently undergo endoreduplication, a process in which chromosomal DNA is successively duplicated in the absence of mitosis. It has been proposed that endoreduplication is regulated at its entry by mitotic cyclin-dependent kinase activity. However, the regulatory mechanisms for its termination remain unclear, although plants tightly control the ploidy level in each cell type. In the process of searching for regulatory factors of endoreduplication, the promoter of an Arabidopsis thaliana cyclin A gene, CYCA2;3, was revealed to be active in developing trichomes during the termination period of endoreduplication as well as in proliferating tissues. Taking advantage of the situation that plants encode highly redundant cyclin A genes, we were able to perform functional dissection of CYCA2;3 using null mutant alleles. Null mutations of CYCA2;3 semidominantly promoted endocycles and increased the ploidy levels achieved in mature organs, but they did not significantly affect the proportion of cells that underwent endoreduplication. Consistent with this result, expression of the CYCA2;3-green fluorescent protein fusion protein restrained endocycles in a dose-dependent manner. Moreover, a mutation in the destruction box of CYCA2;3 stabilized the fusion protein in the nuclei and enhanced the restraint. We conclude that CYCA2;3 negatively regulates endocycles and acts as a key regulator of ploidy levels in Arabidopsis endoreduplication.  相似文献   

15.
Water deficit severely decreases maize (Zea mays L.) kernel growth; the effect is most pronounced in apical regions of ears. The capacity for accumulation of storage material in endosperms is thought to he partially determined by the extent of cell division and endoreduplication (post-mitotic nuclear DNA synthesis). To gain a better understanding of the regulatory mechanisms involved, we have examined the effect of water deficit on cellular development during the post-fertilization period. Greenhouse-grown maize was subjected to water-limited treatments during rapid cell division [from 1 to 10days after pollination (DAP)] or rapid endoreduplication (9 to 15 DAP). The number of nuclei and the nuclear DNA content were determined with flow cytometry. Water deficit from 1 to 10 DAP substantially decreased the rate of endosperm cell division in apical-region kernels, but had little effect on middle-region endosperms. Rewatcring did not allow cell division to recover in apical-region endosperms. Water deficit from 9 to 15 DAP also decreased cell division in apical-region endosperms. Endoreduplication was not affected by the late treatment in either region of the car, but was inhibited by the early treatment in the apical region. In particular, the proportion of nuclei entering higher DN A-content size classes was reduced. We conclude that cell division is highly responsive to water deficit, whereas endoreduplication is less so. We also conclude that the reduced proportion of nuclei entering higher DNA-content size classes during endoreduplication is indicative of multiple control points in the mitotic and endoreduplication cycles.  相似文献   

16.
We have previously shown that endoreduplication levels in hypocotyls of Arabidopsis thaliana (L.) Heynh. are under negative control of phytochromes. In this study, the hormonal regulation of this process was analysed using a collection of A. thaliana mutants. The results show that two hormones in particular, gibberellin (GA) and ethylene, play distinct roles. Hypocotyl cells of the GA-deficient mutant ga1-11 grown in the dark did not elongate and showed a greatly reduced endoreduplication. Normal endoreduplication could be restored by supplying 10−9 M of the gibberellin GA4+7, whereas the restoration of normal cell growth required 100-fold higher concentrations. The GA-insensitive mutant gai showed reduced cell elongation but normal ploidy levels. We conclude that (i) GA4+7 has a global positive effect on endoreduplication and (ii) that endoreduplication is more sensitive to GA4+7 than cell elongation. Ethylene had a completely different effect. It induced an extra round of endoreduplication both in light- and dark-grown seedlings and acted mainly on discrete steps rather than having a global effect on endoreduplication. The genes EIN2 and CTR1, components of the ethylene signal transduction pathway were both involved in this process. Received: 27 February 1999 / Accepted: 21 May 1999  相似文献   

17.
DNA endoreduplication in Zea mays L. (cv. A619 × W64A) endosperm peaks between 16 and 18 d after pollination (DAP). The physiological function of DNA endoreduplication is not known but it is believed to be important in maize kernel development. In the present study, we investigated how 2, 4 or 6 d of high temperature (35 °C) affected DNA endoreduplication and maize kernel development in comparison with control kernels grown at 25 °C. Data were collected on fresh weight (FW), nuclei number, mitotic index, and DNA endoreduplication. Maize endosperm FW and nuclei number were reduced by exposure to 4 or 6 d of high temperature. At 18 DAP, the 2 d high temperature treatment (HTT) caused a reduction in FW and nuclei number, but had no effect on DNA endoreduplication and average DNA content per endosperm. However, when the exposure to high temperature was increased to 4 or 6 d, FW, nuclei number and the magnitude of DNA endoreduplication were progressively reduced, and the peak mitotic index was delayed compared with the control endosperm. At 18 DAP, the 4 d treatment showed 54·7% of the cells were 3 or 6 C, whereas only 41·2% were 12 C or higher. Six days of high temperature also resulted in a reduction in endosperm FW, nuclei number and a delay in the peak of mitotic index. DNA endoreduplication occurred in the kernels exposed to this treatment, although the magnitude was severely reduced compared with the control kernels. Nuclear DNA content was highly correlated (r = 0·93) with kernel FW, suggesting an important role of DNA endoreduplication in determining endosperm FW. The data suggest that high temperature during endosperm cell division exerted negative effects on DNA endoreduplication by dramatically reducing the nuclei number, leaving fewer nuclei available for DNA endoreduplication. However, the data also suggest that prolonged exposure to high temperature restricts entry of mitotic cells into the endoreduplication phase of the cell cycle.  相似文献   

18.
Plants often respond to pathogens by sacrificing cells at the infection site. This type of programmed cell death is mimicked by the constitutive pathogene response5 (cpr5) mutant in Arabidopsis in the absence of pathogens, suggesting a role for CPR5 in programmed cell death control. The analysis of the cellular phenotypes of two T-DNA-tagged cpr5 alleles revealed an additional role for CPR5 in the regulation of endoreduplication and cell division. In cpr5 mutant trichomes, endoreduplication cycles stop after two rounds instead of four, and trichome cells have fewer branches than normal. Eventually, cpr5 trichomes die, the nucleus disintegrates, and the cell collapses. Similarly, leaf growth stops earlier than in wild-type, and, frequently, regions displaying spontaneous cell death are observed. The cloning of the CPR5 gene revealed a novel putative transmembrane protein with a cytosolic domain containing a nuclear-targeting sequence. The dual role of CPR5 in cell proliferation and cell death control suggests a regulatory link between these two processes.  相似文献   

19.
A majority of the cells in the Arabidopsis hypocotyl undergo endoreduplication. The number of endocycles in this organ is partially controlled by light. Up to two cycles occur in light-grown hypocotyls, whereas in the dark about 30% of the cells go through a third cycle. Is the inhibition of the third endocycle in the light an indirect result of the reduced cell size in the light-grown hypocotyl, or is it under independent light control? To address this question, the authors examined the temporal and spacial patterns of endoreduplication in light- or dark-grown plants and report here on the following observations: (i) during germination two endocycles take place prior to any significant cell expansion; (ii) in the dark the third cycle is completed very early during cell growth; and (iii) a mutation that dramatically reduces cell size does not interfere with the third endocycle. The authors then used mutants to study the way light controls the third endocycle and found that the third endocycle is completely suppressed in far red light through the action of phytochrome A and, to a lesser extent, in red light by phytochrome B. Furthermore, no 16C nuclei were observed in dark-grown constitutive photomorphogenic 1 seedlings. And, finally the hypocotyl of the cryptochrome mutant, hy4, grown in blue light was about three times longer than that of the wild-type without a significant difference in ploidy levels. Together, the results support the view that the inhibition of the third endocycle in light-grown hypocotyls is not the consequence of a simple feed-back mechanism coupling the number of cycles to the cell volume, but an integral part of the phytochrome-controlled photomorphogenic program.  相似文献   

20.
The morphology, anatomy and distribution of glandular trichomes on the aerial organs of Salvia argentea L. has been investigated. Two morphologically distinct types of glandular trichomes were determined. Capitate glandular trichomes forming a base 1–7 celled, a stalk 1–5 celled or no stalk and a head uni- or bicellular had various types. In capitate trichomes, the neck cell that has an important role especially for xeroformic plants, acting to prevent the backflow of secreted substance through the apoplast has been distinctively observed in the investigated species. The capitate trichomes were present abundantly on all aerial organs of S. argentea. Peltate glandular trichomes had a large secretory head forming 1–5, 8 central and 8–10, 12, 14 peripheral cells. Peltate trichomes are present on all aerial organs, except petiole, being the most abundant on calyx and corolla. Results were shown by tables and photographs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号