首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.

Introduction  

In addition to its direct proinflammatory activity, extracellular high mobility group box protein 1 (HMGB1) can strongly enhance the cytokine response evoked by other proinflammatory molecules, such as lipopolysaccharide (LPS), CpG-DNA and IL-1β, through the formation of complexes. Extracellular HMGB1 is abundant in arthritic joint tissue where it is suggested to promote inflammation as intra-articular injections of HMGB1 induce synovitis in mice and HMGB1 neutralizing therapy suppresses development of experimental arthritis. The aim of this study was to determine whether HMGB1 in complex with LPS, interleukin (IL)-1α or IL-1β has enhancing effects on the production of proinflammatory mediators by rheumatoid arthritis synovial fibroblasts (RASF) and osteoarthritis synovial fibroblasts (OASF). Furthermore, we examined the toll-like receptor (TLR) 4 and IL-1RI requirement for the cytokine-enhancing effects of the investigated HMGB1-ligand complexes.  相似文献   

4.

Introduction

High mobility group box chromosomal protein 1 (HMGB1) is a nuclear protein that acts as a pro-inflammatory mediator following extracellular release. The protein is aberrantly expressed extracellularly in the settings of clinical and experimental synovitis. Therapy based on HMGB1 antagonists has shown encouraging results in experimental arthritis and warrants further scientific exploration using independent methods. In the present study we asked whether nuclear sequestration of HMGB1 preventing HMGB1 release would be beneficial for synovitis treatment.

Methods

Oxaliplatin-based therapy was evaluated in collagen type II-induced arthritis in DBA/1 mice by clinical scoring and immunostaining of articular tissue. Oxaliplatin is an antineoplastic platinum-based compound that generates DNA adducts which tightly bind HMGB1. Secretion and intracellular location of HMGB1 were assessed by a novel HMGB1-specific ELISPOT assay and immunofluorescent staining.

Results

Intraperitoneal injections of oxaliplatin in early collagen type II-induced arthritis trapped HMGB1 with a distinct biphasic response pattern. Oxaliplatin therapy showed beneficial results for approximately 1 week. Microscopic evaluation of synovitis during this period showed strong nuclear HMGB1 staining in the oxaliplatin treated animals with much lower quantities of extracellular HMGB1 when compared to control treated animals. Furthermore, cellular infiltration, as well as cartilage and bone damage, were all reduced in the oxaliplatin treated group. A dramatic and as yet unexplained clinical relapse occurred later in the oxaliplatin exposed animals, which coincided with a massive synovial tissue expression of extracellular HMGB1 in all treated animals. This rebound-like reaction was also accompanied by a significantly increased incidence of arthritis in the oxaliplatin treated group. These results indicate a distinct temporal and spatial relationship between the clinical course of disease and the cellular localization of HMGB1. Beneficial effects were noted when extracellular HMGB1 expression was low, while severe inflammation coincided with substantial extracellular synovial HMGB1 expression.

Conclusion

Therapeutic compounds like oxaliplatin and gold salts share a capacity to inhibit nuclear HMGB1 release and to ameliorate the course of synovial inflammation. These observations support the hypothesis that HMGB1 plays an important functional role in the pathogenesis of arthritis and may represent a novel target molecule for therapy.  相似文献   

5.
High mobility group box 1 (HMGB1), an abundant, highly conserved cellular protein, is widely known as a nuclear DNA-binding protein. HMGB1 has been recently implicated as a proinflammatory cytokine because of its role as a late mediator of endotoxin lethality and ability to stimulate release of proinflammatory cytokines from monocytes. Production of central cytokines is a critical step in the pathway by which endotoxin and peripheral proinflammatory cytokines, including interleukin-1beta (IL-1) and tumor necrosis factor-alpha (TNF), produce sickness behaviors and fever. Intracerebroventricular (ICV) administration of HMGB1 has been shown to increase TNF expression in mouse brain and induce aphagia and taste aversion. Here we show that ICV injections of HMGB1 induce fever and hypothalamic IL-1 in rats. Furthermore, we show that intrathecal administration of HMGB1 produces mechanical allodynia (lowering of the response threshold to calibrated stimuli). Finally, while endotoxin (lipopolysaccharide, LPS) administration elevates IL-1 and TNF mRNA in various brain regions, HMGB1 mRNA is unchanged. It remains possible that HMGB1 protein is released in brain in response to LPS. Nonetheless, these data suggest that HMGB1 may play a role as an endogenous pyrogen and support the concept that HMGB1 has proinflammatory characteristics within the central nervous system.  相似文献   

6.
We investigated the therapeutic potential and mechanism of action of IFN-β protein for the treatment of rheumatoid arthritis (RA). Collagen-induced arthritis was induced in DBA/1 mice. At the first clinical sign of disease, mice were given daily injections of recombinant mouse IFN-β or saline for 7 days. Disease progression was monitored by visual clinical scoring and measurement of paw swelling. Inflammation and joint destruction were assessed histologically 8 days after the onset of arthritis. Proteoglycan depletion was determined by safranin O staining. Expression of cytokines, receptor activator of NF-κB ligand, and c-Fos was evaluated immunohistochemically. The IL-1-induced expression of IL-6, IL-8, and granulocyte/macrophage-colony-stimulating factor (GM-CSF) was studied by ELISA in supernatant of RA and osteoarthritis fibroblast-like synoviocytes incubated with IFN-β. We also examined the effect of IFN-β on NF-κB activity. IFN-β, at 0.25 μg/injection and higher, significantly reduced disease severity in two experiments, each using 8–10 mice per treatment group. IFN-β-treated animals displayed significantly less cartilage and bone destruction than controls, paralleled by a decreased number of positive cells of two gene products required for osteoclastogenesis, receptor activator of NF-κB ligand and c-Fos. Tumor necrosis factor α and IL-6 expression were significantly reduced, while IL-10 production was increased after IFN-β treatment. IFN-β reduced expression of IL-6, IL-8, and GM-CSF in RA and osteoarthritis fibroblast-like synoviocytes, correlating with reduced NF-κB activity. The data support the view that IFN-β is a potential therapy for RA that might help to diminish both joint inflammation and destruction by cytokine modulation.  相似文献   

7.
HMGB1, a non-histone nuclear factor, acts extracellularly as a mediator of delayed endotoxin lethality, which raises the question of how a nuclear protein can reach the extracellular space. We show that activation of monocytes results in the redistribution of HMGB1 from the nucleus to cytoplasmic organelles, which display ultrastructural features of endolysosomes. HMGB1 secretion is induced by stimuli triggering lysosome exocytosis. The early mediator of inflammation interleukin (IL)-1beta is also secreted by monocytes through a non-classical pathway involving exocytosis of secretory lysosomes. However, in keeping with their respective role of early and late inflammatory factors, IL-1beta and HMGB1 respond at different times to different stimuli: IL-1beta secretion is induced earlier by ATP, autocrinally released by monocytes soon after activation; HMGB1 secretion is triggered by lysophosphatidylcholine, generated later in the inflammation site. Thus, in monocytes, non-classical secretion can occur through vescicle compartments that are at least partially distinct.  相似文献   

8.
9.
10.

Introduction  

High mobility group box 1 (HMGB1) is released by necrotic cells or secreted in response to inflammatory stimuli. Extracellular HMGB1 may act as a pro-inflammatory cytokine in rheumatoid arthritis. We have recently reported that HMGB1 is released by osteoarthritic synoviocytes after activation with interleukin-1beta (IL-1β) The present study investigated the role of HMGB1 in synovial inflammation in osteoarthritis (OA).  相似文献   

11.
We recently discovered that a ubiquitous protein, high mobility group box 1 protein (HMGB1), is released by activated macrophages, and functions as a late mediator of lethal systemic inflammation. To elucidate mechanisms underlying the regulation of HMGB1 release, we examined the roles of other cytokines in induction of HMGB1 release in macrophage cell cultures. Macrophage migration inhibitory factor, macrophage-inflammatory protein 1beta, and IL-6 each failed to significantly induce the release of HMGB1 even at supraphysiological levels (up to 200 ng/ml). IFN-gamma, an immunoregulatory cytokine known to mediate the innate immune response, dose-dependently induced the release of HMGB1, TNF, and NO, but not other cytokines such as IL-1alpha, IL-1beta, or IL-6. Pharmacological suppression of TNF activity with neutralizing Abs, or genetic disruption of TNF expression (TNF knockout) partially (50-60%) inhibited IFN-gamma-mediated HMGB1 release. AG490, a specific inhibitor for Janus kinase 2 of the IFN-gamma signaling pathway, dose-dependently attenuated IFN-gamma-induced HMGB1 release. These data suggest that IFN-gamma plays an important role in the regulation of HMGB1 release through a TNF- and Janus kinase 2-dependent mechanism.  相似文献   

12.

Introduction

TNFα and high mobility group box chromosomal protein 1 (HMGB1) are two potent proinflammatory cytokines implicated as important mediators of arthritis. Increased levels of these cytokines are found in the joints of rheumatoid arthritis patients, and the cytokines trigger arthritis when applied into the joints of naïve mice. HMGB1 is actively released from immune cells in response to TNFα; once released, HMGB1 in turn induces production of several proinflammatory cytokines – including IL-6 and TNFα – by macrophages. Whether HMGB1-induced arthritis is mediated via the TNFα pathway, however, is unknown. The purpose of the present study was to investigate whether the arthritis-inducing effect of HMGB1 is dependent on TNFα expression in vivo and to assess whether TNFα deficiency affects a proinflammatory cytokine response to HMGB1 in vitro.

Methods

TNFα knockout mice and backcrossed control animals on a C57Bl6 background were injected intraarticularly with 5 μg HMGB1. Joints were dissected 3 days after intraarticular injection and were evaluated histologically by scoring the frequency and severity of arthritis. For in vitro studies, mouse spleen cultures from TNFα knockout mice and from control mice were incubated with different doses of HMGB1, and cell culture supernatants were collected at different time points for analysis of IL-6.

Results

Intraarticular injection of HMGB1 into healthy mouse joints resulted in an overall frequency of 32% to 39% arthritic animals. No significant differences were found with respect to the severity and incidence of synovitis between mice deficient for TNFα (seven out of 18 mice with arthritis) in comparison with control TNFα+/+ animals (six out of 19). No significant differences were detected between spleen cells from TNFα+/+ mice versus TNFα-/- mice regarding IL-6 production upon stimulation with highly purified HMGB1 after 24 hours and 48 hours. Upon stimulation with a suboptimal dose of recombinant HMGB1, however, the splenocytes from TNFα+/+ animals released significantly more IL-6 than cells from the knockout mice (602 ± 112 pg/ml and 304 ± 50 pg/ml, respectively; P < 0.05).

Conclusion

Our data show that HMGB1-triggered joint inflammation is not mediated via the TNF pathway. Combined with our previous study, we suggest that HMGB1-triggered arthritis is probably mediated through IL-1 activation.  相似文献   

13.
High-mobility-group box 1 (HMGB1), a nuclear protein, has recently been identified as an important mediator of local and systemic inflammatory diseases when released into the extracellular milieu. Anti-inflammatory regulation by the stress response is an effective autoprotective mechanism when the host encounters harmful stimuli, but the mechanism of action remains incompletely delineated. In this study, we demonstrate that increases in levels of a major stress-inducible protein, heat shock protein 72 (Hsp72) by gene transfection attenuated LPS- or TNF-alpha-induced HMGB1 cytoplasmic translocation and release. The mechanisms involved inhibition of the chromosome region maintenance 1 (CRM1)-dependent nuclear export pathway. Overexpression of Hsp72 inhibited CRM1 translocation and interaction between HMGB1 and CRM1 in macrophages post-LPS and TNF-alpha treatment. In addition, overexpression of Hsp72 strongly inhibited HMGB1-induced cytokine (TNF-alpha, IL-1beta) expression and release, which correlated closely with: 1) inhibition of the MAP kinases (p38, JNK, and ERK); and 2) inhibition of the NF-kappaB pathway. Taken together, these experiments suggest that the anti-inflammatory activity of Hsp72 is achieved by interfering with both the release and proinflammatory function of HMGB1. Our experimental data provide important insights into the anti-inflammatory mechanisms of heat shock protein protection.  相似文献   

14.
Tumor necrosis factor (TNF) and interleukin-1 (IL-1) are considered to be master cytokines in chronic, destructive arthritis. Therapeutic approaches in rheumatoid arthritis (RA) patients have so far focused mainly on TNF, which is a major inflammatory mediator in RA and a potent inducer of IL-1; anti-TNF therapy shows great efficacy in RA patients. However, it is not effective in all patients, nor does it fully control the arthritic process in affected joints of good responders. Directed therapy for IL-1, with IL-1 receptor antagonist, mainly reduces erosions and is marginally anti-inflammatory. It is as yet unclear whether the limited effect is akin to the RA process or linked to suboptimal blocking of IL-1. Analysis of cytokine patterns in early synovial biopsies of RA patients reveals a marked heterogeneity, with variable staining of TNF and IL-1β, indicative of TNF-independent IL-1 production in at least some patients. Evidence for this pathway emerged from experimental arthritises in rodents, and is summarized in this review. If elements of the models apply to the arthritic process in RA patients, it is necessary to block IL-1β in addition to TNF.  相似文献   

15.
Mast cell-mediated allergic inflammation is involved in many diseases such as asthma, sinusitis, and rheumatoid arthritis. Mast cells induce synthesis and production of pro-inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 with immune regulatory properties. The formulated ethanol extract of Artemisia asiatica Nakai (DA-9601) has been reported to have antioxidative and anti-inflammatory activities. In this report, we investigated the effect of DA-9601 on the expression of pro-inflammatory cytokines by the activated human mast cell line HMC-1 and studied its possible mechanisms of action. DA-9601 dose-dependently decreased the gene expression and production of TNF-α, IL-1β, and IL-6 on phorbol 12-myristate 13-acetate (PMA)- and calcium ionophore A23187-stimulated HMC-1 cells. In addition, DA-9601 attenuated PMA- and A23187-induced activation of NF-κB as indicated by inhibition of degradation of IκBα, nuclear translocation of NF-κB, NF-κB/DNA binding, and NF-κB-dependent gene reporter assay. Our in vitro studies provide evidence that DA-9601 might contribute to the treatment of mast cell-derived allergic inflammatory diseases.  相似文献   

16.
To determine the contribution of IL-1β, tumor necrosis factor alpha (TNF-α) and IL-17 to AP-1, NF-κB and Egr-1 activation in rheumatoid arthritis, the effect of the cytokines used alone or in combination was measured on TF expression in rheumatoid synoviocytes. Effects on mRNA expression were measured by RT-PCR and effects on nuclear translocation were measured by immunocytochemistry. To assess the functional consequences of cytokine induction, osteoprotegerin levels were measured in synoviocyte supernatants.  相似文献   

17.
High-mobility group box 1 (HMGB1) protein first made headlines 40 years ago as a non-histone nuclear protein that regulates gene expression. Not so long ago, it was also shown that HMGB1 has an additional surprising function. When released into the extracellular milieu, HMGB1 triggers an inflammatory response by serving as an endogenous danger signal. The pro-inflammatory role of HMGB1 is now well-established and has been associated with several diseases, including sepsis, rheumatoid arthritis, and atherosclerosis. Yet very little is known about its role in obesity, wherein adipose tissue is typified by a persistent, smoldering inflammatory response instigated by high macrophage infiltrate that potentiates the risk of obesity-associated comorbidities. This mini-review focuses on the putative causal relationship between HMGB1 and macrophage pro-inflammatory activation in pathologically altered adipose tissue associated with obesity.  相似文献   

18.
THR0921 is a novel peroxisome proliferator-activated receptor gamma (PPARγ) agonist with potent anti-diabetic properties. Because of the proposed role of PPARγ in inflammation, we investigated the potential of orally active THR0921 to inhibit the pathogenesis of collagen-induced arthritis (CIA). CIA was induced in DBA/1J mice by the injection of bovine type II collagen in complete Freund's adjuvant on days 0 and 21. Mice were treated with THR0921 (50 mg/kg/day) starting on the day of the booster injection and throughout the remaining study period. Both clinical disease activity scores as well as histological scores of joint destruction were significantly reduced in mice treated with THR0921 compared to untreated mice. Proliferation of isolated spleen cells, as well as circulating levels of IgG antibody to type II collagen, was decreased by THR0921. Moreover, spleen cell production of IFN-γ, tumor necrosis factor (TNF)-α and IL-1β in response to exposure to lipopolysaccharide or type II collagen was reduced by in vivo treatment with THR0921. Steady state mRNA levels of TNF-α, IL-1β, monocyte chemotactic protein-1 and receptor activator of nuclear factor κB ligand (RANKL) in isolated joints were all decreased in mice treated with THR0921. Finally, THR0921 inhibited osteoclast differentiation of bone marrow-derived cells stimulated with macrophage colony-stimulating factor and RANKL. In conclusion, THR0921 attenuates collagen-induced arthritis in part by reducing the immune response. As such, PPARγ may be an important therapeutic target for rheumatoid arthritis.  相似文献   

19.
The intricate interactions that regulate relationships between endogenous tissue cells and infiltrating immune cells in the rheumatic joint, particularly in rheumatoid arthritis (RA), were the subject of the meeting. A better understanding of these interactions might help to define intervention points that could be used to develop specific therapies. The presentations and discussions highlighted the fact that, once chronic inflammation is established, several pro-inflammatory loops involving tumour necrosis factor (TNF)-α and interleukin (IL)-1β can be defined. Direct cellular contact with stimulated T lymphocytes induces TNF-α and IL-1β in monocytes which in turn induce functions in fibroblast-like synoviocytes. The latter include the production of stromal cell-derived factor-1α (SDF-1α) which enhances the expression of CD40L in T cells, which stimulates SDF-1α production in synoviocytes, which in turn protects T and B cells from apoptosis and enhances cell recruitment thus favoring inflammatory processes. IL-1β and TNF-α also induce IL-15 in fibroblast-like synoviocytes, which induces the production of IL-17 which in turn potentiates IL-1β and TNF-α production in monocyte-macrophages. This underlines the importance of TNF-α and IL-1β in RA pathogenesis, and helps explain the efficiency of agents blocking the activity of these cytokines in RA. Factors able to block the induction of cytokine production (such as apolipoprotein A-I [apo A-I] and interferon [IFN]-β) might interfere more distally in the inflammatory process. Furthermore, stimulated T lymphocytes produce osteoclast differentiation factor (ODF), which triggers erosive functions of osteoclasts. Therefore, factors capable of affecting the level of T lymphocyte activation, such as IFN-β, IL-15 antagonist, or SDF-1α antagonist, might be of interest in RA therapy.  相似文献   

20.
Monosodium urate crystals stimulate monocytes and macrophages to release IL-1β through the NALP3 component of the inflammasome. The effectiveness of IL-1 inhibition in hereditary autoinflammatory syndromes with mutations in the NALP3 protein suggested that IL-1 inhibition might also be effective in relieving the inflammatory manifestations of acute gout. The effectiveness of IL-1 inhibition was first evaluated in a mouse model of monosodium urate crystal-induced inflammation. IL-1 inhibition prevented peritoneal neutrophil accumulation but TNF blockade had no effect. Based on these findings, we performed a pilot, open-labeled study (trial registration number ISRCTN10862635) in 10 patients with gout who could not tolerate or had failed standard antiinflammatory therapies. All patients received 100 mg anakinra daily for 3 days. All 10 patients with acute gout responded rapidly to anakinra. No adverse effects were observed. IL-1 blockade appears to be an effective therapy for acute gouty arthritis. The clinical findings need to be confirmed in a controlled study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号