首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is abundant evidence that the DNA in eukaryotic cells is organized into loop domains that represent basic structural and functional units of chromatin packaging. To explore the DNA domain organization of the breast cancer loss-of-heterozygosity region on human chromosome 16q22.1, we have identified a significant portion of the scaffold/matrix attachment regions (S/MARs) within this region. Forty independent putative S/MAR elements were assigned within the 16q22.1 locus. More than 90% of these S/MARs are AT rich, with GC contents as low as 27% in 2 cases. Thirty-nine (98%) of the S/MARs are located within genes and 36 (90%) in gene introns, of which 15 are in first introns of different genes. The clear tendency of S/MARs from this region to be located within the introns suggests their regulatory role. The S/MAR resource constructed may contribute to an understanding of how the genes in the region are regulated and of how the structural architecture and functional organization of the DNA are related.  相似文献   

2.
Attachment regions of the eukaryotic chromosomal DNA to the nuclear scaffold/matrix (S/MARs) participate in various important cellular processes. However, no obvious characteristics common for these nucleotide sequences have been revealed, except that S/MARs are non-coding sites containing putative regulatory elements and binding sites of DNA-topoisomerase II. Heterogeneity among S/MARs can be caused by a variety of biological factors. In this paper, the accuracy of two S/MARs prediction programs, MAR-Finder (Singh, Kramer and Krawetz, 1997) and ChrClass (Glazkov, Rogozin and Glazko, 1998) are compared and it is concluded that both programs can be recommended for analysis of eukaryotic genomes. However, results of their prediction should be interpreted with caution since estimation of prediction accuracy of both programs needs further analysis. Problems of S/MARs prediction are illustrated on several examples of human protein-coding genes, repeated elements and the beta-globin locus from different mammalian species. Results of our analysis suggest that the proportion of missed S/MARs is lower for ChrClass, whereas the proportion of wrong S/MARs is lower for MAR-Finder (a default set of parameters).  相似文献   

3.
Scaffold or matrix-attachment regions (S/MARs) are thought to be involved in the organization of eukaryotic chromosomes and in the regulation of several DNA functions. Their characteristics are conserved between plants and humans, and a variety of biological activities have been associated with them. The identification of S/MARs within genomic sequences has proved to be unexpectedly difficult, as they do not appear to have consensus sequences or sequence motifs associated with them. We have shown that S/MARs do share a characteristic structural property, they have a markedly high predicted propensity to undergo strand separation when placed under negative superhelical tension. This result agrees with experimental observations, that S/MARs contain base-unpairing regions (BURs). Here, we perform a quantitative evaluation of the association between the ease of stress-induced DNA duplex destabilization (SIDD) and S/MAR binding activity. We first use synthetic oligomers to investigate how the arrangement of localized unpairing elements within a base-unpairing region affects S/MAR binding. The organizational properties found in this way are applied to the investigation of correlations between specific measures of stress-induced duplex destabilization and the binding properties of naturally occurring S/MARs. For this purpose, we analyze S/MAR and non-S/MAR elements that have been derived from the human genome or from the tobacco genome. We find that S/MARs exhibit long regions of extensive destabilization. Moreover, quantitative measures of the SIDD attributes of these fragments calculated under uniform conditions are found to correlate very highly (r2>0.8) with their experimentally measured S/MAR-binding strengths. These results suggest that duplex destabilization may be involved in the mechanisms by which S/MARs function. They suggest also that SIDD properties may be incorporated into an improved computational strategy to search genomic DNA sequences for sites having the necessary attributes to function as S/MARs, and even to estimate their relative binding strengths.  相似文献   

4.
5.
S/MARs (scaffold/matrix attachment regions) are the DNA regions that are involved in the interaction with the nuclear matrix and are identified by in vitro methods. According to the available information, S/MARs possess an insulating activity, i.e., the ability to block the interaction between the enhancer and promoter in vivo, and are, probably, intact insulators or their fragments. Nevertheless, there is still no direct proof for this correspondence. To obtain additional information on the insulator activity of S/MARs, we selected five DNA fragments of different lengths and affinities for the nuclear matrix from a previously constructed library of S/MARs and tested their ability to serve as insulators. Two of five elements exhibited an insulator (enhancer blocking) activity upon the transient transfection of CHO cells. None of the S/MARs displayed either promoter or enhancer/silencer activities in these cells.Translated from Bioorganicheskaya Khimiya, Vol. 31, No. 1, 2005, pp. 77–81.Original Russian Text Copyright © 2005 by Sass, Ruda, Akopov, Snezhkov, Nikolaev, Sverdlov.  相似文献   

6.

Background  

Binding of a bacteria to a eukaryotic cell triggers a complex network of interactions in and between both cells. P. aeruginosa is a pathogen that causes acute and chronic lung infections by interacting with the pulmonary epithelial cells. We use this example for examining the ways of triggering the response of the eukaryotic cell(s), leading us to a better understanding of the details of the inflammatory process in general.  相似文献   

7.
8.

Background  

Compartmentalization is a key feature of eukaryotic cells, but its evolution remains poorly understood. GTPases are the oldest enzymes that use nucleotides as substrates and they participate in a wide range of cellular processes. Therefore, they are ideal tools for comparative genomic studies aimed at understanding how aspects of biological complexity such as cellular compartmentalization evolved.  相似文献   

9.
10.
11.
S/MARs (scaffold/matrix attachment regions) are the DNA regions that are involved in the interaction with the nuclear matrix and are identified by in vitro methods. According to the available information, S/MARs possess an insulating activity, i.e., the ability to block the interaction between the enhancer and promoter in vivo, and are, probably, intact insulators or their fragments. Nevertheless, there is still no direct proof for this correspondence. To obtain additional information on the insulator activity of S/MARs, we selected five DNA fragments of different lengths and affinities for the nuclear matrix from the previously constructed library of S/MARs and tested their ability to serve as insulators. Two of five elements exhibited an insulator (enhancer-blocking) activity upon the transient transfection of CHO cells. None of the S/MARs displayed either promoter or enhancer/silencer activities in these cells.  相似文献   

12.

Background  

Ypt/Rab GTPases and their GEF activators regulate intra-cellular trafficking in all eukaryotic cells. In S. cerivisiae, the modular TRAPP complex acts as a GEF for the Golgi gatekeepers: Ypt1 and the functional pair Ypt31/32. While TRAPPI, which acts in early Golgi, is conserved from fungi to animals, not much is known about TRAPPII, which acts in late Golgi and consists of TRAPPI plus three additional subunits.  相似文献   

13.
14.
S/MAR与基因表达   总被引:3,自引:0,他引:3  
在真核生物的细胞核内,基因组是通过DNA的核骨架附着(SAR)或称核基质附着区(MAR)(简记为S/MAR)锚定在核骨架网状系统上的.S/MAR既有一定的特征,又有多样性,研究认为它参与了DNA复制调控和转录调控等多种核内生化过程,通过重组,在目的基因一侧或两侧带上S/MAR后作基因转染或基因动植物,发现整合后的基因表达有时可增强几倍,甚至上万倍和/或显示位置独立效应,有些研究还报道,S/MAR能  相似文献   

15.
Matrix attachment regions (MARs) are thought to buffer transgenes from the influence of surrounding chromosomal sequences, and therefore to reduce transgene silencing and variation in expression. The statistical properties of more than 400 independent transgenic events produced in Populus, with and without flanking MAR elements from the tobacco root gene RB7, were analysed. The expression of two reporter genes in two poplar clones during three phases of vegetative growth, and the association of T‐DNA characteristics with expression, was examined. It was found that MARs did not show a consistent effect on transgene expression levels; they had no effect on the green fluorescent protein (GFP) reporter gene, but reduced expression in the Basta resistance (BAR) reporter gene by 23%. The presence of MARs reduced expression variability within transformant populations, apparently by reducing the number of silenced or weakly expressing events. Transgene expression was highly stable over vegetative growth cycles that spanned 3 years of growth in the glasshouse and field, but MARs showed no association with the strength of correlations in expression over the years. Nonetheless, MARs increased the correlation in expression between a p35S::GFP and prbcS::BAR transgene linked on the same vector, but the effect was small and varied between the years. The presence of MARs had no effect on the transgene copy number, but was positively associated with T‐DNA truncations, as well as with the formation of direct over inverted repeats at the same chromosomal locus.  相似文献   

16.

Key message

Peanuts transformed with the synthetic cry8Ea1 gene flanked by MARs are a potentially effective control strategy against white grubs. Cry8Ea1 protein levels of the construct containing MARs were increased by 2.5 times.

Abstract

White grubs are now recognized as the most important pests of peanut worldwide. A synthetic cry8Ea1 gene, which was toxic to Holotrichia parallela larvae, was expressed in chimeric peanut roots using an Agrobacterium rhizogenes-mediated transformation system. The relative mRNA and protein levels of the cry8Ea1 gene were confirmed by quantitative real-time PCR and ELISA, respectively. The effects of matrix attachment regions (MARs) on the expression and activity of the cry8Ea1 gene were analyzed. The average expression level of cry8Ea1 in peanut roots was higher for the plants harboring constructs flanked by MARs from tobacco. Moreover, differing from previous studies, the synthetic cry8Ea1 gene flanked by MARs showed more variation in protein levels than mRNA levels. These composite plants containing cry8Ea1 gene flanked by MARs exhibited a high toxicity against Holotrichia parallela larvae as shown by bioassay analysis, thus offering a potential effective combination to control subterranean insects in peanuts.  相似文献   

17.
18.

Background  

DNA replication in higher eukaryotic cells is organized in discrete subnuclear sites called replication foci (RF). During the S phase, most replication proteins assemble at the RF by interacting with PCNA via a PCNA binding domain (PBD). This has been shown to occur for many mammalian replication proteins, but it is not known whether this mechanism is conserved in evolution.  相似文献   

19.

Background  

The signal peptide plays an important role in protein targeting and protein translocation in both prokaryotic and eukaryotic cells. This transient, short peptide sequence functions like a postal address on an envelope by targeting proteins for secretion or for transfer to specific organelles for further processing. Understanding how signal peptides function is crucial in predicting where proteins are translocated. To support this understanding, we present SPdb signal peptide database , a repository of experimentally determined and computationally predicted signal peptides.  相似文献   

20.

Background  

The origin of eukaryotic cells was one of the most dramatic evolutionary transitions in the history of life. It is generally assumed that eukaryotes evolved later then prokaryotes by the transformation or fusion of prokaryotic lineages. However, as yet there is no consensus regarding the nature of the prokaryotic group(s) ancestral to eukaryotes. Regardless of this, a hardly debatable fundamental novel characteristic of the last eukaryotic common ancestor was the ability to exploit prokaryotic biomass by the ingestion of entire cells, i.e. phagocytosis. The recent advances in our understanding of the social life of prokaryotes may help to explain the origin of this form of total exploitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号