首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Slicing across kingdoms: regeneration in plants and animals   总被引:1,自引:0,他引:1  
Multicellular organisms possessing relatively long life spans are subjected to diverse, constant, and often intense intrinsic and extrinsic challenges to their survival. Animal and plant tissues wear out as part of normal physiological functions and can be lost to predators, disease, and injury. Both kingdoms survive this wide variety of insults by strategies that include the maintenance of adult stem cells or the induction of stem cell potential in differentiated cells. Repatterning mechanisms often deploy embryonic genes, but the question remains in both plants and animals whether regeneration invokes embryogenesis, generic patterning mechanisms, or unique circuitry comprised of well-established patterning genes.  相似文献   

4.
5.
Species evolutionary relationships have traditionally been defined by sequence similarities of phylogenetic marker molecules, recently followed by whole-genome phylogenies based on gene order, average ortholog similarity or gene content. Here, we introduce genome conservation--a novel metric of evolutionary distances between species that simultaneously takes into account, both gene content and sequence similarity at the whole-genome level. Genome conservation represents a robust distance measure, as demonstrated by accurate phylogenetic reconstructions. The genome conservation matrix for all presently sequenced organisms exhibits a remarkable ability to define evolutionary relationships across all taxonomic ranges. An assessment of taxonomic ranks with genome conservation shows that certain ranks are inadequately described and raises the possibility for a more precise and quantitative taxonomy in the future. All phylogenetic reconstructions are available at the genome phylogeny server: .  相似文献   

6.
Phosphoinositides (PIs) are minor, but essential phospholipid constituents of eukaryotic membranes, and are involved in the regulation of various physiological processes. Recent genetic and cell biological advances indicate that PIs play important roles in the control of polar tip growth in plant cells. In root hairs and pollen tubes, PIs control directional membrane trafficking required for the delivery of cell wall material and membrane area to the growing tip. So far, the exact mechanisms by which PIs control polarity and tip growth are unresolved. However, data gained from the analysis of plant, fungal and animal systems implicate PIs in the control of cytoskeletal dynamics, ion channel activity as well as vesicle trafficking. The present review aims at giving an overview of PI roles in eukaryotic cells with a special focus on functions pertaining to the control of cell polarity. Comparative screening of plant and fungal genomes suggests diversification of the PI system with increasing organismic complexity. The evolutionary conservation of the PI system among eukaryotic cells suggests a role for PIs in tip growing cells in models where PIs so far have not been a focus of attention, such as fungal hyphae.  相似文献   

7.
Polysaccharides are essential biopolymers produced in all kingdoms of life. On the cell surface, they represent versatile architectural components, forming protective capsules and coats, cell walls, or adhesives. Extracellular polysaccharide (EPS) biosynthesis mechanisms differ based on the cellular localization of polymer assembly. Some polysaccharides are first synthesized in the cytosol and then extruded by ATP powered transporters [1]. In other cases, the polymers are assembled outside the cell [2], synthesized and secreted in a single step [3], or deposited on the cell surface via vesicular trafficking [4]. This review focuses on recent insights into the biosynthesis, secretion, and assembly of EPS in microbes, plants and vertebrates. We focus on comparing the sites of biosynthesis, secretion mechanisms, and higher-order EPS assemblies.  相似文献   

8.
Filamentous fungi and oomycetes are eukaryotic microorganisms that grow by producing networks of thread-like hyphae, which secrete enzymes to break down complex nutrients, such as wood and plant material, and recover the resulting simple sugars and amino acids by osmotrophy. These organisms are extremely similar in both appearance and lifestyle and include some of the most economically important plant pathogens . However, the morphological similarity of fungi and oomycetes is misleading because they represent some of the most distantly related eukaryote evolutionary groupings, and their shared osmotrophic growth habit is interpreted as being the result of convergent evolution . The fungi branch with the animals, whereas the oomycetes branch with photosynthetic algae as part of the Chromalveolata . In this report, we provide strong phylogenetic evidence that multiple horizontal gene transfers (HGT) have occurred from filamentous ascomycete fungi to the distantly related oomycetes. We also present evidence that a subset of the associated gene families was initially the product of prokaryote-to-fungi HGT. The predicted functions of the gene products associated with fungi-to-oomycete HGT suggest that this process has played a significant role in the evolution of the osmotrophic, filamentous lifestyle on two separate branches of the eukaryote tree.  相似文献   

9.
10.
Protein elongation can occur in many ways, such as domain duplication or insertion and as recruitment of a transposable element fragment into the coding region, and it is believed to be a general tendency in protein evolution. Indeed, a previous study showed that yeast proteins are, on average, longer than their orthologs in bacteria, and in this study, we found that proteins in yeast, nematode, Drosophila, human, and Arabidopsis are, on average, longer than their orthologs in Escherichia coli. Surprisingly, however, we found conservation of protein sequence length across eukaryotic kingdoms. We collected 1,252 orthologous proteins from yeast, nematode, Drosophila, human, and Arabidopsis and found that the total length of these proteins is very similar among the five species and that there is no general tendency for a protein to increase or decrease in length. Furthermore, although paralogous proteins tend to undergo more sequence-length changes, there is also no general tendency for length increase. However, proteins that are commonly shared by Drosophila and human but not by yeast are, on average, substantially longer than proteins that are shared by yeast, Drosophila, and human. This is a puzzle that begs for an answer.  相似文献   

11.

Background

The protein S4 of the smaller ribosomal subunit is centrally important for its anchorage role in ribosome assembly and rRNA binding. Eubacterial S4 also facilitates synthesis of rRNA, and restrains translation of ribosomal proteins of the same polycistronic mRNA. Eukaryotic S4 has no homolog in eubacterial kingdom, nor are such extraribosomal functions of S4 known in plants and animals even as genetic evidence suggests that deficiency of S4X isoform in 46,XX human females may produce Turner syndrome (45,XO).

Methods

Recombinant human S4X and rice S4 were used to determine their enzymatic action in the cleavage of synthetic peptide substrates and natural proteins. We also studied autoproteolysis of the recombinant S4 proteins, and examined the growth and proliferation of S4-transfected human embryonic kidney cells.

Results

Extraribosomal enzyme nature of eukaryotic S4 is described. Both human S4X and rice S4 are cysteine proteases capable of hydrolyzing a wide spectrum of peptides and natural proteins of diverse origin. Whereas rice S4 also cleaves the -XXXD↓- consensus sequence assumed to be specific for caspase-9 and granzyme B, human S4 does not. Curiously, both human and rice S4 show multiple-site autoproteolysis leading to self-annihilation. Overexpression of human S4 blocks the growth and proliferation of transfected embryonic kidney cells, presumably due to the extraribosomal enzyme trait reported.

Conclusions

The S4 proteins of humans and rice, prototypes of eukaryota, are non-specific cysteine proteases in the extraribosomal milieu.

General significance

The enzyme nature of S4 is relevant toward understanding not only the origin of ribosomal proteins, but also processes in cell biology and diseases.  相似文献   

12.
V. Dostál  L. Libusová 《Protoplasma》2014,251(5):991-1005
Microtubule drugs such as paclitaxel, colchicine, vinblastine, trifluralin, or oryzalin form a chemically diverse group that has been reinforced by a large number of novel compounds over time. They all share the ability to change microtubule properties. The profound effects of disrupted microtubule systems on cell physiology can be used in research as well as anticancer treatment and agricultural weed control. The activity of microtubule drugs generally depends on their binding to α- and β-tubulin subunits. The microtubule drugs are often effective only in certain taxonomic groups, while other organisms remain resistant. Available information on the molecular basis of this selectivity is summarized. In addition to reviewing published data, we performed sequence data mining, searching for kingdom-specific signatures in plant, animal, fungal, and protozoan tubulin sequences. Our findings clearly correlate with known microtubule drug resistance determinants and add more amino acid positions with a putative effect on drug-tubulin interaction. The issue of microtubule network properties in plant cells producing microtubule drugs is also addressed.  相似文献   

13.
Li G  Ma Q  Mao X  Yin Y  Zhu X  Xu Y 《Nucleic acids research》2011,39(22):e150
Existing methods for orthologous gene mapping suffer from two general problems: (i) they are computationally too slow and their results are difficult to interpret for automated large-scale applications when based on phylogenetic analyses; or (ii) they are too prone to making mistakes in dealing with complex situations involving horizontal gene transfers and gene fusion due to the lack of a sound basis when based on sequence similarity information. We present a novel algorithm, Global Optimization Strategy (GOST), for orthologous gene mapping through combining sequence similarity and contextual (working partners) information, using a combinatorial optimization framework. Genome-scale applications of GOST show substantial improvements over the predictions by three popular sequence similarity-based orthology mapping programs. Our analysis indicates that our algorithm overcomes the intrinsic issues faced by sequence similarity-based methods, when orthology mapping involves gene fusions and horizontal gene transfers. Our program runs as efficiently as the most efficient sequence similarity-based algorithm in the public domain. GOST is freely downloadable at http://csbl.bmb.uga.edu/~maqin/GOST.  相似文献   

14.

Background

Vibrio Parahaemolyticus is an aquatic, halophilic, Gram-negative bacterium, first discovered in 1950 in Japan during a food-poisoning outbreak. Infections resulting from consumption of V. Parahaemolyticus have increased globally in the last 10 years leading to the bacterium's classification as a newly emerging pathogen. In 1996 the first appearance of a pandemic V. Parahaemolyticus clone occurred, a new O3:K6 serotype strain that has now been identified worldwide as a major cause of seafood-borne gastroenteritis.

Results

We examined the sequenced genome of V. Parahaemolyticus RIMD2210633, an O3:K6 serotype strain isolated in Japan in 1996, by bioinformatic analyses to uncover genomic islands (GIs) that may play a role in the emergence and pathogenesis of pandemic strains. We identified 7 regions ranging in size from 10 kb to 81 kb that had the characteristics of GIs such as aberrant base composition compared to the core genome, presence of phage-like integrases, flanked by direct repeats and the absence of these regions from closely related species. Molecular analysis of worldwide clinical isolates of V. Parahaemolyticus recovered over the last 33 years demonstrated that a 24 kb region named V. Parahaemolyticus island-1 (VPaI-1) encompassing ORFs VP0380 to VP0403 is only present in new O3:K6 and related strains recovered after 1995. We investigated the presence of 3 additional regions, VPaI-4 (VP2131 to VP2144), VPaI-5 (VP2900 to VP2910) and VPaI-6 (VPA1254 to VPA1270) by PCR assays and Southern blot analyses among the same set of V. Parahaemolyticus isolates. These 3 VPaI regions also gave similar distribution patterns amongst the 41 strains examined.

Conclusion

The 4 VPaI regions examined may represent DNA acquired by the pandemic group of V. Parahaemolyticus isolates that increased their fitness either in the aquatic environment or in their ability to infect humans.  相似文献   

15.
Edwards TA  Pyle SE  Wharton RP  Aggarwal AK 《Cell》2001,105(2):281-289
Translation regulation plays an essential role in the differentiation and development of animal cells. One well-studied case is the control of hunchback mRNA during early Drosophila embryogenesis by the trans-acting factors Pumilio, Nanos, and Brain Tumor. We report here a crystal structure of the critical region of Pumilio, the Puf domain, that organizes a multivalent repression complex on the 3' untranslated region of hunchback mRNA. The structure reveals an extended, rainbow shaped molecule, with tandem helical repeats that bear unexpected resemblance to the armadillo repeats in beta-catenin and the HEAT repeats in protein phosphatase 2A. Based on the structure and genetic experiments, we identify putative interaction surfaces for hunchback mRNA and the cofactors Nanos and Brain Tumor. This analysis suggests that similar features in helical repeat proteins are used to bind extended peptides and RNA.  相似文献   

16.
Evolution and orthology of hedgehog genes   总被引:3,自引:0,他引:3  
  相似文献   

17.
18.
Septins are polymerizing GTPases required for cytokinesis and cortical organization. The principles by which they are targeted to, and assemble at, specific cell regions are unknown. We show that septins in mammalian cells switch between a linear organization along actin bundles and cytoplasmic rings, approximately 0.6 microm in diameter. A recombinant septin complex self-assembles into rings resembling those in cells. Linear organization along actin bundles was reconstituted by adding an adaptor protein, anillin. Perturbation of septin organization in cells by expression of a septin-interacting fragment of anillin or by septin depletion via siRNA causes loss of actin bundles. We conclude that septins alone self-assemble into rings, that adaptor proteins recruit septins to actin bundles, and that septins help organize these bundles.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号