首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dubus I  Sena S  Labouyrie JP  Bonnet J  Combe C 《Life sciences》2005,77(26):3366-3374
Nephrotoxicity is a major side-effect of cyclosporin A (CsA), which induces a vasoconstrictive response in vascular smooth muscle and mesangial cells. Mycophenolic acid (MPA) is used in combination with low-dose CsA to reduce nephrotoxicity. We previously demonstrated that MPA affected mesangial cell contractile response to angiotensin II or KCl. Aims of the present study were to evaluate if MPA can prevent CsA-induced contraction of human mesangial and aortic smooth muscle cells (ASMC). Using a morphoquantitative approach, we evidenced that pretreatment with MPA (1 microM) prevented the reduction of cell area induced by CsA within 30 min in both cell types. We then compared the expression of three main cytoskeleton proteins: tubulin, alpha-smooth actin (SMA) and basic calponin, in ASMC and in mesangial cells treated with MPA and/or CsA. CsA alone did not significantly change the expression level of these proteins neither in mesangial cells nor in ASMC. MPA decreased the expression level of tubulin in both mesangial cells and ASMC. Surprisingly, MPA, which stimulated SMA and calponin expression in mesangial cells, exerted an inhibitory effect on both contractile protein expression in ASMC. In conclusion, our results evidenced opposite effects of MPA on calponin and SMA protein expression in ASMC and in mesangial cells, despite similar antiproliferative properties, suggesting that sarcomeric protein expression is controlled by different intracellular mechanisms in mesangial and smooth muscle cells. However, MPA interferes in both cell types with the constrictive properties CsA, which may partially explain the protective effects of MPA against CsA nephrotoxicity.  相似文献   

2.
Fosfomycin is clinically recognized to reduce the aminoglycoside antibiotics-induced nephrotoxicity. However, little has been clarified why fosfomycin protects the kidney from the aminoglycosides-induced nephrotoxicity. Gentamicin, a typical aminoglycoside, is reported to cause lipid peroxidation. We focused on lipid peroxidation induced by gentamicin as a mechanism for the aminoglycosides-induced nephrotoxicity. The aim of this study is to investigate the effect of fosfomycin on the gentamicin-induced lipid peroxidation. In rat renal cortex mitochondria, fosfomycin was shown to depress the gentamicin-induced lipid peroxidation, which was evaluated by formation of thiobarbituric acid reactive substances (TBARS). Interestingly, this effect was observed in rat renal cortex mitochondria, but not in rat liver microsomes. However, fosfomycin did not affect lipid peroxidation of arachidonic acid caused by gentamicin with iron. Fosfomycin inhibited the gentamicin-induced iron release from rat renal cortex mitochondria. These results indicated that fosfomycin inhibited the gentamicin-induced lipid peroxidation by depressing the iron release from mitochondria. This may possibly be one mechanism for the protection of fosfomycin against the gentamicin-induced nephrotoxicity.  相似文献   

3.
The purpose of this short review is to present the potential of using isolated glomeruli and cultured mesangial cells as two differentin vitro models to assess the glomerular effect of molecules with nephrotoxic properties. The advantage of using isolated renal glomeruli is that they conserve the architecture of this anatomical region of the kidney; moreover, they are free of any vascular, nervous or humoral influences derived from other regions of the kidney. Mesangial cells are perivascular pericytes located within the central portion of the glomerular tuft between capillary loops. Mesangial cells have a variety of functions including synthesis and assembly of the mesangial matrix, endocytosis and processing of plasma macromolecules, and control of glomerular hemodynamics, mainly the ultrafiltration coefficient K f, via mesangial cell contraction or release of vasoactive hormones. Most authors agree that mesangial cells play a major role in glomerular contraction, filtration surface area, and K f regulation. One of the major effects of toxicants on glomerular structures is contraction. We can assess quantitatively the degree of toxicant-induced mesangial cell contraction or glomerular contraction by measuring the changes in planar cell surface area or apparent glomerular cross-sectional area after exposition to the toxicant. Thesein vitro models can also reveal glomerular effects of xenobiotics that are difficult or impossible to observe in vivo. In addition, these studies permit a fundamental examination of the mechanism of action of xenobiotics on glomerular cells, including the possibility that at least a part of their effects are mediated by local mediators released by glomerular cells. We review the effects and the mechanisms of action of several toxicants such as gentamicin, cyclosporin, cisplatin, and cadmium on isolated glomeruli or cultured mesangial cells. As suchin vitro results confirmin vivo renal hemodynamic changes caused by toxicants, we conclude that these models are fruitful tools for the study of renal toxicity. Thesein vitro systems might also serve as a predictive tool in the evaluation of drugs inducing changes in glomerular filtration rate and as a way to propose protective agents against these dramatic hemodynamic effects. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Cyclosporin A induces in vivo a severe nephrotoxicity characterized by a large decrease in renal hemodynamics. The aim of this study is to establish the ability of the known NO donor 3-morpholinosydnomine (SIN-1) to prevent the cyclosporin A-induced contraction by using rat isolated glomeruli and cultured glomerular mesangial cells. Isolated rat glomeruli are obtained from the renal superficial cortex by a sieving method. Mesangial cells are cultured in RPMI 1640 with 15% fetal calf serum. The planar surface area (PSA) of either isolated glomeruli or mesangial cells is assessed using anage analyzer. Each glomerusus or mesangial cell serves as its own control through calculation of the area before any drug incubation and after incubation for 10, 20 and 30 min either in control solution or in control solution with cyclosporin A alone or cyclosporin A and SIN-1. Cyclosporin A (10–6 mol/L) induces an important time-dependent contraction of either glomerulus or mesangial cell. When pretreated with different concentrations of SIN-1 (10–4 to 10–9 mol/L), only a slight size decrease is noted. In conclusion, a direct constrictive effect of cyclosporin A in isolated glomeruli and mesangial cells can be prevented bythe NO donor SIN-1, suggesting an important involvement of the nitric oxide pathway in the cyclosporin A-induced nephrotoxicity.Abbreviations CyA cyclosporin A - SIN-1 3-morpholinosydnonimine - FCS fetal calf serum - PSA planar surface area  相似文献   

5.
Gentamicin is an antibiotic effective against gram negative infections, whose clinical use is limited by its nephrotoxicity. Since the pathogenesis of gentamicin-induced nephrotoxicity involves oxygen free radicals, the antioxidant carvedilol may protect against gentamicin-induced renal toxicity. We therefore tested this hypothesis using a rat model of gentamicin nephrotoxicity. Carvedilol (2 mg/kg) was administered intraperitoneally 3 days before and 8 days concurrently with gentamicin (80 mg/kg BW). Estimations of urine creatinine, glucose, blood urea, serum creatinine, plasma and kidney tissue malondialdehyde (MDA) were carried out, after the last dose of gentamicin. Kidneys were also examined for morphological changes. Gentamicin caused marked nephrotoxicity as evidenced by increase in blood urea, serum creatinine and decreased in creatinine clearance. Blood urea and serum creatinine was increased by 883% and 480% respectively with gentamicin compared to control. Carvedilol protected the rats from gentamicin induced nephrotoxicity. Rise in blood urea, serum creatinine and decrease in creatinine clearance was significantly prevented by carvedilol. There was 190% and 377% rise in plasma and kidney tissue MDA with gentamicin. Carvedilol prevented the gentamicin induced rise in both plasma and kidney tissue MDA. Kidney from gentamicin treated rats, histologically showed necrosis and desquamation of tubular epithelial cells in renal cortex, whereas it was very much comparable to control with carvedilol. In conclusion, carvedilol with its antioxidant property protected the rats from gentamicin-induced nephrotoxicity.  相似文献   

6.
Gentamicin nephrotoxicity is one of the most common causes of acute kidney injury (AKI). Hypoxia-inducible factor (HIF) is effective in protecting the kidney from ischemic and toxic injury. Increased expression of HIF-1α mRNA has been reported in rats with gentamicin-induced renal injury. We hypothesizd that we could study the role of HIF in gentamicin-induced AKI by modulating HIF activity. In this study, we investigated whether HIF activation had protective effects on gentamicin-induced renal tubule cell injury. Gentamicin-induced AKI was established in male Sprague-Dawley rats. Cobalt was continuously infused into the rats to activate HIF. HK-2 cells were pre-treated with cobalt or dimethyloxalylglycine (DMOG) to activate HIF and were then exposed to gentamicin. Cobalt or DMOG significantly increased HIF-1α expression in rat kidneys and HK-2 cells. In HK-2 cells, HIF inhibited gentamicin-induced reactive oxygen species (ROS) formation. HIF also protected these cells from apoptosis by reducing caspase-3 activity and the amount of cleaved caspase-3, and -9 proteins. Increased expression of HIF-1α reduced the number of gentamicin-induced apoptotic cells in rat kidneys and HK-2 cells. HIF activation improved the creatinine clearance and proteinuria in gentamicin-induced AKI. HIF activation also ameliorated the extent of histologic injury and reduced macrophage infiltration into the tubulointerstitium. In gentamicin-induced AKI, the activation of HIF by cobalt or DMOG attenuated renal dysfunction, proteinuria, and structural damage through a reduction of oxidative stress, inflammation, and apoptosis in renal tubular epithelial cells.  相似文献   

7.
The effect of Ginkgo biloba (EGb), a plant extract with an antioxidant effect, has been studied on gentamicin-induced nephrotoxicity in male wistar rats. Ginkgo biloba extract (300 mg/kg BW) was administered orally 2 days before and 8 days concurrently with gentamicin (80 mg/kg BW). Saline treated animals served as control. Estimations of urine creatinine, glucose, blood urea, serum creatinine, plasma and kidney tissue MDA were carried out after 8 days of gentamicin treatment. Kidneys were examined using histological techniques. Blood urea and serum creatinine were increased by 896% and 461% respectively, with gentamicin, compared to saline treated group. Creatinine clearance was significantly decreased with gentamicin. Ginkgo biloba extract protected rats from gentamicin-induced nephrotoxicity. Changes in blood urea, serum creatinine and creatinine clearance induced by gentamicin were significantly prevented by Ginkgo biloba extract. There was a 177% and 374% rise in plasma and kidney tissue MDA with gentamicin, which were significantly reduced to normal with Ginkgo biloba extract. Histomorphology showed necrosis and desquamation of tubular epithelial cells in renal cortex with gentamicin, while it was normal and comparable to control with Ginkgo biloba extract. These data suggest that supplementation of Ginkgo biloba extract may be helpful to reduce gentamicin nephrotoxicity.  相似文献   

8.
Hair cells and spiral ganglion neurons of the mammalian auditory system do not regenerate, and their loss leads to irreversible hearing loss. Aminoglycosides induce auditory hair cell death in vitro, and evidence suggests that phosphatidylinositol-3-kinase/Akt signaling opposes gentamicin toxicity via its downstream target, the protein kinase Akt. We previously demonstrated that somatostatin—a peptide with hormone/neurotransmitter properties—can protect hair cells from gentamicin-induced hair cell death in vitro, and that somatostatin receptors are expressed in the mammalian inner ear. However, it remains unknown how this protective effect is mediated. In the present study, we show a highly significant protective effect of octreotide (a drug that mimics and is more potent than somatostatin) on gentamicin-induced hair cell death, and increased Akt phosphorylation in octreotide-treated organ of Corti explants in vitro. Moreover, we demonstrate that somatostatin receptor-1 knockout mice overexpress somatostatin receptor-2 in the organ of Corti, and are less susceptible to gentamicin-induced hair cell loss than wild-type or somatostatin-1/somatostatin-2 double-knockout mice. Finally, we show that octreotide affects auditory hair cells, enhances spiral ganglion neurite number, and decreases spiral ganglion neurite length.  相似文献   

9.
The aminoglycoside antibiotic gentamicin elicits proximal tubular toxicity and cell death. In calcium-sensing receptor (CaR)-transfected HEK-293 (CaR-HEK) cells and CaR-expressing proximal tubule-derived opossum kidney (OK) cells, chronic gentamicin treatment elicits dose-dependent, caspase-mediated apoptotic cell death. Here we investigated whether the renal cell toxicity of the CaR agonist gentamicin could be prevented by CaR antagonism or by lithium cotreatment which may interfere with receptor-mediated signalling. Chronic treatment of OK and CaR-HEK cells with low concentrations of gentamicin elicited cell death, an effect that was ameliorated by cotreatment with the CaR negative allosteric modulator (calcilytic) NPS-89636. This calcilytic also attenuated CaR agonist-induced ERK activation in these cells. In addition, 1 mM LiCl, equivalent to its therapeutic plasma concentration, also inhibited gentamicin-induced toxicity in both cell types. This protective effect of lithium was not due to the disruption of phosphatidylinositol-mediated gentamicin uptake as the cellular entry of Texas red-conjugated gentamicin into OK and CaR-HEK cells was unchanged by lithium treatment. However, the protective effect of lithium was mimicked by glycogen synthase 3beta inhibition. Together, these data implicate CaR activation and a lithium-inhibitable signalling pathway in the induction of cell death by gentamicin in renal epithelial cells in culture.  相似文献   

10.
Gentamicin is an effective and powerful antibiotic. Extended use or excessive dosages of which can result in irreversible damage to the inner ear. The development of otoprotective strategies is a primary and urgent goal in research of gentamicin ototoxicity. Ginkgo biloba leaves and their extracts are among the most widely used herbal products and/or dietary supplements in the world. We investigated the protection of EGb 761 (a standardized preparation of EGb) on gentamicin ototoxicity and the involvement of reactive oxygen species (ROS) and nitric oxide (NO)-related mechanisms using in vitro organ cultures and an in vivo animal model. Gentamicin induced hair cell damage in cochlear cultures that could be prevented by EGb 761. EGb 761 also significantly reduced gentamicin-induced ROS and NO production. Furthermore, EGb 761 inhibited cellular apoptosis in cultured cochleae treated with gentamicin. In guinea pigs with gentamicin application onto the round window membrane, the mean auditory brain stem response threshold, ratio of cochlear hair cell damage and apoptosis were significantly elevated compared with those in the control group, and this could be prevented by oral administration of EGb 761. Individual EGb 761 components quercetin, bilobalide, ginkgolide A and ginkgolide B, but not kaempferol, significantly prevented gentamicin-induced hair cell damage. These results indicate that EGb 761 has a protective effect against gentamicin ototoxicity through a reduction in the formation of ROS and NO and subsequent inhibition of hair cell apoptosis in the cochlea.  相似文献   

11.
Nephrotoxicity is known to be a major clinical side effect of aminoglycoside antibiotics. Aminoglycosides cause damage to proximal tubular cells in kidney, however the mechanism of toxicity is still unclear. In order to elucidate the mechanism of nephrotoxicity, we studied the effect of aminoglycoside antibiotics on glucose transport systems in vitro and in vivo. As a result, we found that the aminoglycosides significantly reduced Na(+)/glucose cotransporter (SGLT1)-dependent glucose transport and also down-regulated mRNA and protein levels of the SGLT1 in pig proximal tubular LLC-PK(1) cells. To obtain evidence about SGLT1 down-regulation in vivo, we studied the mRNA expression of SGLT1 using gentamicin C-treated murine kidney and found that gentamicin C down-regulated SGLT1 in vivo as well as in vitro. Furthermore, the gentamicin C-treated mice showed significant rise in urinary glucose excretion. These results indicate that one of the mechanisms of aminoglycoside nephrotoxicity is the down-regulation of SGLT1, which causes reduction in glucose reabsorption in kidney.  相似文献   

12.
Aminoglycoside antibiotics such as gentamicin could cause ototoxicity in mammalians, by inducing oxidative stress and apoptosis in sensory hair cells of the cochlea. Sodium hydrosulfide (NaHS) is reported to alleviate oxidative stress and apoptosis, but its role in protecting aminoglycoside-induced hearing loss is unclear. In this study, we investigated the anti-oxidant and anti-apoptosis effect of NaHS in in vitro cultured House Ear Institute-Organ of Corti 1 (HEI-OC1) cells and isolated mouse cochlea. Results from cultured HEI-OC1 cells and cochlea consistently indicated that NaHS exhibited protective effects from gentamicin-induced ototoxicity, evident by maintained cell viability, hair cell number and cochlear morphology, reduced reactive oxygen species production and mitochondrial depolarization, as well as apoptosis activation of the intrinsic pathway. Moreover, in the isolated cochlear culture, NaHS was also demonstrated to protect the explant from gentamicin-induced mechanotransduction loss. Our study using multiple in vitro models revealed for the first time, the potential of NaHS as a therapeutic agent in protecting against aminoglycoside-induced hearing loss.  相似文献   

13.
Despite increased risk of a recurrent stroke following a minor stroke, information is minimal regarding the interaction between injurious mild cerebral ischemic episodes and the possible treatments which might be effective. The aim of the current study was to investigate recurrent ischemic stroke and whether resveratrol, a nutritive polyphenol with promising cardio- and neuro- protective properties, could ameliorate the associated brain damage. Experiments in adult rats demonstrated that a mild ischemic stroke followed by a second mild cerebral ischemia exacerbated brain damage, and, daily oral resveratrol treatment after the first ischemic insult reduced ischemic cell death with the recurrent insult (P<0.002). Further investigation demonstrated reduction of both inflammatory changes and markers of oxidative stress in resveratrol treated animals. The protection observed with resveratrol treatment could not be explained by systemic effects of resveratrol treatment including effects either on blood pressure or body temperature measured telemetrically. Investigation of resveratrol effects on the blood-brain barrier in vivo demonstrated that resveratrol treatment reduced blood-brain barrier disruption and edema following recurrent stroke without affecting regional cerebral blood flow. Investigation of the mechanism in primary cell culture studies demonstrated that resveratrol treatment significantly protected endothelial cells against an in vitro ‘ischemia’ resulting in improved viability against oxygen and glucose deprivation (39.6±6.6% and 81.3±9.5% in vehicle and resveratrol treated cells, respectively). An inhibition of nitric oxide synthesis did not prevent the improved cell viability following oxygen glucose deprivation but SIRT-1 inhibition with sirtinol partially blocked the protection (P<0.001) suggesting endothelial protection is to some extent SIRT-1 dependent. Collectively, the results support that oral resveratrol treatment provides a low risk strategy to protect the brain from enhanced damage produced by recurrent stroke which is mediated in part by a protective effect of resveratrol on the endothelium of the cerebrovasculature.  相似文献   

14.
Therapeutic effect of ethanolic extract of Hygrophila spinosa in gentamicin-induced nephrotoxic model of kidney injury in male Sprague-Dawley rats was studied. Rats were administered with gentamicin at a dose of 80 mg/kg intraperitoneally (ip) to induce nephrotoxicity. Kidney function was assessed by measuring serum creatinine and urea. Kidney superoxide dismutase, lipid peroxidation, catalase and reduced glutathione were also measured in control and treated rats. H. spinosa extract showed free radical scavenging activities at doses of 50 and 250 mg/kg with a predominant activity at 250 mg/kg. The ethanolic extract also caused a reduction in serum creatinine and urea levels. Histopathological studies were conducted to confirm the therapeutic action of the plant extract. The results demonstrated that the ethanolic extract of whole plant of H. spinosa evinced the therapeutic effect and inhibited gentamicin-induced proximal tubular necrosis.  相似文献   

15.
Gentamicin has been shown to induce renal tubular damage in man and laboratory animals and to result in elevated urinary excretion of some enzymes associated with specific cell regions in the kidney. In the present investigation, the possible protective effect of selenium against gentamicin-induced renal damage was tested by measuring the urinary excretion of some enzymes in the presence and absence of selenium. Our results show that a prior subcutaneous injection of selenium to rats for two days followed by a simultaneous S.C. injection of gentamicin and selenium resulted in a marked reduction in the excretion of such biochemical systems as the urine volume, urinary proteins, alkaline and acid phosphatases, beta-glucuronidase, muramidase, and glutamate dehydrogenase. Renal functional studies revealed that selenium-treated rats suffered less adverse effects compared to rats treated with gentamicin alone. Urinary acid phosphatase, beta-glucuronidase and muramidase, the three lysosomal enzymes tested, appeared to respond most readily to protection by selenium.  相似文献   

16.
Hyperglycemia and mannitol activate protein kinase C (PKC) and induce mesangial cell hypocontractility that subsequently may modulate renal function. Since focal adhesion kinase (FAK) activation is known to be linked with PKC activity, FAK may also be involved in mesangial cell contraction. To facilitate our understanding of the PKC- and FAK-modulating mechanism, we developed an in vitro model of mouse mesangial cell hypocontractility induced by hyperglycemia or mannitol. Mouse mesangial cells (CRL-1927) were exposed to: normal D-glucose (group N), high D-glucose (group H), and control groups at the same osmolality as H plus L-glucose (group L) and mannitol (group M). Changes in the planar surface area of cells in response to 1 microM phorbol 12-myristate 13-acetate (PMA) were determined. Western blot analyses for PKC, phosphorylated (p)-PKC, tyrosine phosphorylation, FAK, and p-FAK were done on each of these four groups. The effects of mannitol in various doses on cell contraction and activation of PKC and FAK were also assayed. The planar surface areas of groups H and M both showed an attenuated change in response to PMA stimulation. Before PMA stimulation, the baseline PKC expression of groups H and M showed a higher expression of p-PKC alpha and delta than that seen in group N (p < 0.05). Results of tyrosine phosphorylation and immunoprecipitation showed that FAK may be involved in this contraction process. The total amount of FAK showed no significant difference among the four experimental groups; however, p-FAK was found to have significantly increased in group M (p < 0.05). The use of PKC and tyrosine kinase inhibitors reduced PMA-induced mesangial cell contraction in all four groups. Activation of PKC alpha, delta, and FAK with the resultant inhibition of mesangial cell contraction by mannitol was found to be dose-dependent. These results may provide a correlation between increased expression of several PKC isoforms and, in particular, increased phosphorylation levels of PKC alpha and delta and hypocontractility induced by high glucose and mannitol treatment. Furthermore, the mannitol-induced hypocontractility involving PKC and FAK occurred in a dose-dependent manner.  相似文献   

17.
Endothelial dysfunction secondary to persistent hyperglycemia plays a key role in the development of type 2 diabetic vascular disease. The aim of the present study was to examine the protective effect of resveratrol against hyperglycemia-induced endothelial dysfunction. In cultured human umbilical vein endothelial cells (HUVECs), resveratrol (10-100 μM) concentration dependently enhanced phosphorylation of endothelial nitric oxide synthesis (eNOS) at Ser1177 and nitric oxide (NO) production. In addition, resveratrol can increase the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) at Thr172 and suppress high glucose-induced generation of superoxide anion. In mouse aortic rings, resveratrol (1-100 μM) elicited endothelium-dependent vasodilatations and alleviated high glucose-mediated endothelial dysfunction. All these beneficial effects of resveratrol on the endothelium were abolished by pharmacological antagonism of AMPK by compound C. These results provide new insight into the protective properties of resveratrol against endothelial dysfunction caused by high glucose, which is attributed to the AMPK mediated reduction of superoxide level.  相似文献   

18.
Cephaloridine and gentamicin are selectively accumulated in renal cortex and produce necrosis of proximal tubular cells. However, the mechanisms responsible for renal cortical accumulation of these two antibiotics are quite different; therefore the early pathogenetic processes may not be the same. In the present study, effects of two cephalosporins (cephaloridine and cephalothin) and an aminoglycoside (gentamicin) on rat renal cortical glutathione were determined. Cephaloridine produced a dose-related depletion of renal cortical glutathione one hour following a single administration of the drug. In contrast, cephalothin in equivalent doses did not reduce renal cortical glutathione. Gentamicin had no effect on renal cortical glutathione, even when an acutely lethal dose (1000 mg/kg) was used. Pretreatment of rats with diethyl maleate (0.4 ml/kg) markedly depleted renal cortical glutathione and this pretreatment also potentiated cephaloridine nephrotoxicity. These results suggest that glutathione may play a protective role against cephaloridine but not gentamicin nephrotoxicity.  相似文献   

19.
Poly(inosinic) and poly(cytidylic) acids (Poly I:Poly C) have been used to induce the production of endogenous interferon or release preformed interferon in mammals. Interferon increases the resistance of the cells. Sixty guinea pigs were used to investigate whether Poly I:Poly C gave protection from gentamicin nephrotoxicity. The animals were divided into six equal groups. Group 1 were controls; group 2 received gentamicin intramuscularly; group 3 received gentamicin and 12 h later frusemide; group 4 received gentamicin and 12 h later 1-deamino-8-D-argine vasopressin (DDAVP) intramuscularly; group 5 received subcutaneously Poly I:Poly C; group 6 received Poly I:Poly C and 24 h later gentamicin. Frusemide in group 3 potentiated gentamicin nephrotoxicity while DDAVP in group 4 ameliorated gentamicin nephrotoxicity. Poly I:Poly C itself had no toxic effect on renal tissue, while Poly I:Poly C followed 24 h later by gentamicin indicated a protective effect from the gentamicin nephrotoxicity as the functional and histological investigations indicated.  相似文献   

20.
Nakamagoe M  Tabuchi K  Nishimura B  Hara A 《Steroids》2011,76(13):1443-1450
As neuroactive steroids, sex steroid hormones have non-reproductive effects. We previously reported that 17β-estradiol (βE2) had protective effects against gentamicin (GM) ototoxicity in the cochlea. In the present study, we examined whether the protective action of βE2 on GM ototoxicity is mediated by the estrogen receptor (ER) and whether other estrogens (17α-estradiol (αE2), estrone (E1), and estriol (E3)) and other neuroactive steroids, dehydroepiandrosterone (DHEA) and progesterone (P), have similar protective effects. The basal turn of the organ of Corti was dissected from Sprague-Dawley rats and cultured in a medium containing 100 μM GM for 48 h. The effects of βE2 and ICI 182,780, a selective ER antagonist, were examined. In addition, the effects of other estrogens, DHEA and P were tested using this culture system. Loss of outer hair cells induced by GM exposure was compared among groups. βE2 exhibited a protective effect against GM ototoxicity, but its protective effect was antagonized by ICI 182,780. αE2, E1, and E3 also protected hair cells against gentamicin ototoxicity. DHEA showed a protective effect; however, the addition of ICI 182,780 did not affect hair cell loss. P did not have any effect on GM-induced outer hair cell death. The present findings suggest that estrogens and DHEA are protective agents against GM ototoxicity. The results of the ER antagonist study also suggest that the protective action of βE2 is mediated via ER but that of DHEA is not related to its conversion to estrogen and binding to ER. Further studies on neuroactive steroids may lead to new insights regarding cochlear protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号