首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although nutrient stress is known to alter partitioning between shoots and roots, the physiological basis for the phenomenon is unresolved. Experiments were conducted to examine assimilation of 15NO3 by N-stressed plants and to determine whether apparent changes in assimilation in the root contributed to alterations in whole-plant partitioning of reduced-N. Tobacco plants (Nicotiana tabacum L. cv. NC 2326) were exposed to a low concentration of NO3? in solution (80 μM) for 9 days to effect a N-stress response. Exposure of plants to 1000 μM15NO3? for 12 h on selected days revealed that roots of N-stressed plants developed an increased capacity to absorb NO3?, and accumulation of reduced-15N in the root increased to an even greater extent. When plants were exposed to 80 or 1000 μM15NO3? in steady-state, 15NO3? uptake over a 12 h period was noticeably restricted at the lower concentration, but a larger proportion of the absorbed 15N still accumulated as reduced-15N in the root. The alteration in reduced-15N partitioning was maintained in N-stressed plants during the subsequent 3-day “chase” period when formation of insoluble reduced-15N in the root was quantitatively related to the disappearance of 15NO3? and soluble reduced-15N. The results indicate that increased assimilation of absorbed NO3?, in the root may contribute significantly to the altered reduced-N partitioning which occurs in N-stressed plants.  相似文献   

2.
土壤微生物生物量氮及其在氮素循环中作用   总被引:11,自引:0,他引:11  
简述了土壤微生物生物量氮的含量及其影响因素,阐述了其在土壤氮素循环中的重要作用,着重讨论了其与可矿化氮、矿质氮、有机氮和固定态铵之间的关系,指出土壤微生物生物量氮与供氮因子间的关系在氮素循环研究中有非常重要的作用,可为调控土壤氮素的供应状况,减少氮素损失,提高氮肥利用率提供科学依据,并提出了需要深入研究的问题。  相似文献   

3.
Carbon and nitrogen stoichiometry and nitrogen cycling rates in streams   总被引:4,自引:0,他引:4  
Stoichiometric analyses can be used to investigate the linkages between N and C cycles and how these linkages influence biogeochemistry at many scales, from components of individual ecosystems up to the biosphere. N-specific NH4+ uptake rates were measured in eight streams using short-term 15N tracer additions, and C to N ratios (C:N) were determined from living and non-living organic matter collected from ten streams. These data were also compared to previously published data compiled from studies of lakes, ponds, wetlands, forests, and tundra. There was a significant negative relationship between C:N and N-specific uptake rate; C:N could account for 41% of the variance in N-specific uptake rate across all streams, and the relationship held in five of eight streams. Most of the variation in N-specific uptake rate was contributed by detrital and primary producer compartments with large values of C:N and small values for N-specific uptake rate. In streams, particulate materials are not as likely to move downstream as dissolved N, so if N is cycling in a particulate compartment, N retention is likely to be greater. Together, these data suggest that N retention may depend in part on C:N of living and non-living organic matter in streams. Factors that alter C:N of stream ecosystem compartments, such as removal of riparian vegetation or N fertilization, may influence the amount of retention attributed to these ecosystem compartments by causing shifts in stoichiometry. Our analysis suggests that C:N of ecosystem compartments can be used to link N-cycling models across streams.  相似文献   

4.
K. Vlassak 《Plant and Soil》1970,32(1-3):27-32
Summary The mineralization capacity of 24 different soils was determined from incubation experiments. Relatively rapid mineralization and nitrification was found with soils from cultivated land, and pastures, but soils under natural vegetative covers of conifers and hardwoods were mostly ammonifying. A close relationship could be established between the total nitrogen content of the soil and the amount of mineral nitrogen formed during incubation. Important connections could also be shown between the available nitrogen contents at different times during the incubation period; these suggest that the incubation period can be considerably shortened.  相似文献   

5.
Vertical gradients of leaf nitrogen (N) per unit leaf area (NLA) are viewed as plastic responses that optimize N utilization with respect to carbon assimilation. However, it has been shown that plant species, sowing density and N availability affect the steepness of the NLA gradient relative to the photon flux density (PFD) gradient. This paper tests the hypothesis that such variation is related to the N status of the plant. The N status was analysed using the concept of the critical N concentration (Ncrit) in which shoot N per unit dry mass (NSM) decreases with shoot mass, and a negative deviation of actual NSM from Ncrit indicates N shortage in the plant. The hypothesis was tested with contrasting grassland species Medicago sativa, Dactylis glomerata and Taraxacum officinale by varying PFD and N availability, plant density and hierarchical positions of individuals within stands. Combinations of all treatments showed a general negative correlation between the N allocation coefficient (i.e. the slope of the NLA-PFD relationship) and NSM for all three species. Thus, NLA, relative to PFD, gradients became steeper with increasing shoot mass and increasing N shortage in the plant. These data are consistent with the view that internal N availability is an important factor in modifying the NLA gradient.  相似文献   

6.
以宁麦9号和豫麦34号为材料,研究了氮肥基追比对土壤无机氮时空变化、氮素表观盈亏和氮肥利用率的影响。结果表明,施用基肥提高了越冬期0-60 cm土层NO3--N和NH4+-N含量,拔节期追肥对孕穗期各土层无机氮含量无显著影响,追施孕穗肥显著提高了开花期0-60 cm土层硝态氮含量和0-20 cm土层铵态氮含量。不施氮处理各生育阶段均表现为氮素亏缺,施氮处理氮素盈亏呈明显的阶段性,播种至孕穗阶段出现氮素盈余,孕穗至成熟阶段出现氮素亏缺;全生育期氮素表观盈余量两品种平均以5∶5处理最低,7∶3处理最高。两品种氮肥农学效率、氮肥表观回收率和产量均随基肥比例的增加呈先增后降的趋势,均以5∶5处理最高。因此,在小麦生产中应适当减少基施氮肥用量,在小麦拔节孕穗期适当增加追肥比例有利于提高产量和氮肥利用效率,并降低土壤氮素损失。  相似文献   

7.
8.
添加氮素对沙质草地土壤氮素有效性的影响   总被引:4,自引:1,他引:3  
通过氮素添加(20g.m-2.a-1)试验,研究了科尔沁沙地东南部沙质草地生态系统土壤氮矿化及有效氮的季节变化。对2006年生长季的观测发现,添加氮素显著提高了沙质草地生长季土壤铵态氮、硝态氮、矿质氮的含量以及9月1日至10月15日的净氮矿化速率与硝化速率;添加氮素导致土壤有效氮的季节变异增大,净氮矿化(1.29~11.60mg.kg-1.30d-1)与硝化(-4.15~11.20mg.kg-1.30d-1)速率随时间呈上升趋势,铵态氮含量逐渐降低,硝态氮与矿质氮(6.49~20.66mg.kg-1)含量的变化呈"V"型,最小值出现在生物量生长高峰期的7月中旬。该沙质草地土壤氮的有效性较低,施氮肥可明显提高土壤供氮能力。  相似文献   

9.
Vast areas of southern Chile are now covered by second-growth forests because of fire and logging. To study successional patterns after moderate-intensity, anthropogenic fire disturbance, we assessed differences in soil properties and N fluxes across a chronosequence of seven successional stands (2–130 years old). We examined current predictions of successional theory concerning changes in the N cycle in forest ecosystems. Seasonal fluctuations of net N mineralization (Nmin) in surface soil and N availability (Na; Na=NH 4 + –N+NO 3 –N) in upper and deep soil horizons were positively correlated with monthly precipitation. In accordance with theoretical predictions, stand age was positively, but weakly related to both Na (r 2=0.282, P<0.001) and total N (Ntot; r 2=0.192, P<0.01), and negatively related to soil C/N ratios (r 2=0.187, P<0.01) in surface soils. A weak linear increase in soil Nmin (upper plus deep soil horizons) was found across the chronosequence (r 2=0.124, P<0.022). Nmin occurred at modest rates in early successional stands, suggesting that soil disturbance did not impair microbial processes. The relationship between N fixation (Nfix) in the litter layer and stand age best fitted a quadratic model (r 2=0.228, P<0.01). In contrast to documented successional trends for most temperate, tropical and Mediterranean forests, non-symbiotic Nfix in the litter layer is a steady N input to unpolluted southern temperate forests during mid and late succession, which may compensate for hydrological losses of organic N from old-growth ecosystems.  相似文献   

10.
Palta  J. A.  Fillery  I. R. P. 《Plant and Soil》1993,155(1):179-181
A 15N leaf feeding technique was used to measure the extent of remobilisation and loss of nitrogen (N) that had been accumulated prior to anthesis in wheat plants that received three rates of N fertilizer. Uptake of postanthesis N to the heads was reduced as the quantity of applied N was increased. This reduction of postanthesis N uptake did not affect the quqntity of N in the heads because the loss of preanthesis accumulated N was reduced and the extent of remobilised preanthesis N increased at higher rates of N application. At the lowest rate of N application the increase in 15N in the heads of fertile shoots arose chiefly from the remobilisation of N in the stem supporting the head. At higher rates of N application this source of N was increasingly supplemented by N remobilised from infertile tillers and roots.  相似文献   

11.
Flooding can be an important control of nitrogen (N) biogeochemistry in wetland ecosystems. In North American prairie marshes, spring flooding is a dominant feature of the physical environment that increases emergent plant production and could influence N cycling. I investigated how spring flooding affects N availability and plant N utilization in whitetop (Scolochloa festucacea) marshes in Manitoba, Canada by comparing experimentally spring-flooded marsh inside an impoundment with adjacent nonflooded marsh. The spring-flooded marsh had net N mineralization rates up to 4 times greater than nonflooded marsh. Total growing season net N mineralization was 124 kg N ha–1 in the spring-flooded marsh compared with 62 kg N ha–1 in the nonflooded marsh. Summer water level drawdown in the spring-flooded marsh decreased net N mineralization rates. Net nitrification rates increased in the nonflooded marsh following a lowering of the water table during mid summer. Growing season net nitrification was 33 kg N ha–1 in the nonflooded marsh but < 1 kg N ha–1 in the spring-flooded marsh. Added NO3 –1 induced nitrate reductase (NRA) activity in whitetop grown in pot culture. Field-collected plants showed higher NRA in the nonflooded marsh. Nitrate comprised 40% of total plant N uptake in the nonflooded marsh but <1% of total N uptake in the spring-flooded marsh. Higher plant N demand caused by higher whitetop production in the spring-flooded marsh approximately balanced greater net N mineralization. A close association between the presence of spring flooding and net N mineralization and net nitrification rates indicated that modifications to prairie marshes that change the pattern of spring inundation will lead to rapid and significant changes in marsh N cycling patterns.  相似文献   

12.
The method described comprises the transformation of ammonium into ammonia, the rapid and gentle liberation of the ammonia followed by the measurement of the nitrogen in a Dohrmann nitrogen analyzer. Untreated biological samples (1-50 microliters) were pipetted onto magnesium oxide tablets at 130 degrees C and the ammonia liberated was transferred by a continuous stream of nitrogen carrier gas into the nitrogen analyzer. There the ammonia was determined by oxidative pyrolysis and subsequent chemiluminescence measurement of the excited NO2. The result could be read in nanograms ammonia nitrogen within 6.5 min. Apart from volatile amines, which are usually negligible in biological samples, the method was specific for ammonia because under the given conditions of volatilization the labile groups of glutamine and asparagine did not interfere. The assay was sensitive in the range of 1.5-150 nmol ammonia and suitable for the routine analysis of small samples.  相似文献   

13.
Relationships among growth, N accumulation and assimilation were investigated in Chrysanthemum morifolium Ramat cv. Fiesta in experiments testing the effects of varying levels of NO–33supply and of increasing NH+4 added to a constant level of NO–33 Flowing solution culture systems were used to provide NO?3at concentrations of 0.03 to 5.0 mol m–3 and NH+4 levels from 0.05 to 0.3 mmol m–3 added to 0.1 mol m–3NO?3. Rates of growth, N absorption, accumulation, distribution and utilization were estimated by regression analysis of data obtained from sequential plant harvests, and rates of NO?3 and NH?4 net uptake were estimated from solution depletion. A sustained ambient NO?3 concentration of 0.03 mol m–3 was evidently adequate to support growth, since relative growth rates were not affected by increasing NO?3 supply from 0.03 to 1.0 mol m–3, nor from 0.25 to 5.0 mol m–3, in separate experiments. Shoot growth rates were stimulated by NH4 added to NO?3 one experiment, but not when the experiment was repeated under ambient conditions less favorable to growth. Relative accumulation rates for total N increased with increasing NO?3 and with NH+4added to NO?3 A constant proportion of NO?3 taken up was reduced when NO?3 alone was supplied. Both the proportion of total N taken up as NO?3 and the proportion of NO?3 reduced decreased with increasing NH+3 added to NO?3 NH+4 uptake apparently must exceed a threshold of about 30% of the total uptake to inhibit NO?3 uptake. Utilization of N in chrysanthemum was apparently limited by redistribution since relative accumulation rates for total N were equal to or greater than relative growth rates, in contrast to results reported for several other species. Results of this study and other information support the postulate that NH+4 added to NO?3might stimulate growth by increasing transport of reduced N from roots to shoots, thus increasing the supply of reduced N available to support growth of shoot meristems.  相似文献   

14.
红松混交林凋落物氮储量及分解释放对土壤氮的影响   总被引:3,自引:0,他引:3  
2012年5—10月,采用直接收获法,研究了小兴安岭地区云冷杉红松混交林和枫桦红松混交林两种林型凋落物的未分解层(L层)、半分解层(F层)和腐殖质层(H层)以及土壤表层(S层)氮储量及凋落物分解释放对土壤氮影响。结果表明:研究期间两种林型凋落物现存量变化范围分别为19.43~27.25和21.25~24.28 t·hm-2,氮储量变化范围分别为287.21~418.22和274.81~351.21 kg·hm-2,各层氮含量大小次序均为LFHS;云冷杉红松混交林各层凋落物现存量及其氮储存量5月和9月达到峰值,每月氮储量从L~H层均增加,凋落物分解释放氮在F和H层易富集,输入到土壤中较少;枫桦红松混交林各层凋落物现存量及其氮储量5月和10月达到峰值,每月氮储量从L~H层均减少,氮在凋落物各层中均易迁移,输入到土壤中的氮比云冷杉红松混交林多;两种林型L、F、H层凋落物现存量以及H层氮含量与S层氮含量之间,L和F层凋落物现存量与H层氮含量之间均呈显著正相关。  相似文献   

15.
16.
17.
Summary The fate of14C-urea, injected intraperitoneally in Willow ptarmigan (Lagopus l. lagopus) has been examined. During five hours 13.6% of the injected activity was recovered in expired CO2 and 3.5% in urine. Expired activity decreased exponentially with time at a rate corresponding to a half life of 104 min. After Neoterramycin treatment recovery in CO2 decreased to 7.2% and recovery in urine increased to 8.0%. Specific activity of the caecal content was 7 times higher than average at the end of the experiments. The results indicate that only a minor proportion of the urea from the bird's systemic circulation is excreted in the urine, the major part being hydrolyzed by the caecal microorganisms.  相似文献   

18.
19.
Future trends in nitrogen research   总被引:2,自引:0,他引:2  
N research effort has undergone major changes over recent decades with changing emphasis because of environmental problems and issues. This driving force, coupled with a universal desire to improve N-use efficiency, appreciation of the importance of maintaining soil resource quality and a need to provide integrated landscape managements, will continue to prompt new research areas and issues for study. Already, much information has been provided and new approaches and needs defined. It will be essential in future research to take full note of the many interactions that occur and to provide a mechanistic basis so that scaling of effects can be undertaken with the appropriate simplification without being superficial. Examples of interactions, as well as fundamental gaps in the basic processes are discussed and needs for future research identified.  相似文献   

20.
Inorganic nitrogen is an essential nutrient for photosynthetic organisms. Its efficient use in nature involves adaptation of the organisms to the availability of the nitrogen supply, to changing environmental conditions, and to the provision of carbon and other nutrients. The unicellular alga Chlamydomonas provides a useful model to identify not only each of the components participating in the assimilative process in a species, but also the regulatory networks modulating their activity. A remarkable fact is the ample array of transporters for inorganic nitrogen compounds operating in this single cell: 13 putative nitrate/nitrite transporters and eight putative ammonium transporters. However, for nitrate, only a few of them participate as the main suppliers of nitrogen for cell growth, and others probably function to adapt nitrogen utilization efficiency to conditions depending not only on the nitrogen source available but also on other nutrients and environmental conditions. This paper summarizes recent findings in Chlamydomonas to provide an integrated perspective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号