首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xiong Y  Li F  Wang J  Weiner AM  Steitz TA 《Molecular cell》2003,12(5):1165-1172
CCA-adding enzymes catalyze the addition of CCA onto the 3' terminus of immature tRNAs without using a nucleic acid template and have been divided into two classes based on their amino acid sequences. We have determined the crystal structures of a class I CCA-adding enzyme from Archeoglobus fulgidus (AfCCA) and its complexes with ATP, CTP, or UTP. Although it and the class II bacterial Bacillus stearothermophilus CCA enzyme (BstCCA) have similar dimensions and domain architectures (head, neck, body, and tail), only the polymerase domain is structurally homologous. Moreover, the relative orientation of the head domain with respect to the body and tail domains, which appear likely to bind tRNA, differs significantly between the two enzyme classes. Unlike the class II BstCCA, this enzyme binds nucleotides nonspecifically in the absence of bound tRNA. The shape and electrostatic charge distribution of the AfCCA enzyme suggests a model for tRNA binding that accounts for the phosphates that are protected from chemical modification by tRNA binding to AfCCA. The structures of the AfCCA enzyme and the eukaryotic poly(A) polymerase are very similar, implying a close evolutionary relationship between them.  相似文献   

2.
The CCA-adding enzyme ATP(CTP):tRNA nucleotidyltransferase builds and repairs the 3'-terminal CCA sequence of tRNA. Although this unusual RNA polymerase has no nucleic acid template, it can construct the CCA sequence one nucleotide at a time using CTP and ATP as substrates. We found previously that tRNA does not translocate along the enzyme during CCA addition (Yue, D., Weiner, A. M., and Maizels, N. (1998) J. Biol. Chem. 273, 29693-29700) and that a single nucleotidyltransferase motif adds all three nucleotides (Shi, P.-Y., Maizels, N., and Weiner, A. M. (1998) EMBO J. 17, 3197-3206). Intriguingly, the CCA-adding enzyme from the archaeon Sulfolobus shibatae is a homodimer that forms a tetramer upon binding two tRNAs. We therefore asked whether the active form of the S. shibatae enzyme might have two quasi-equivalent active sites, one adding CTP and the other ATP. Using an intersubunit complementation approach, we demonstrate that the dimer is active and that a single catalytically active subunit can carry out all three steps of CCA addition. We also locate one UV light-induced tRNA cross-link on the enzyme structure and provide evidence suggesting the location of another. Our data rule out shuttling models in which the 3'-end of the tRNA shuttles from one quasi-equivalent active site to another, demonstrate that tRNA-induced tetramerization is not required for CCA addition, and support a role for the tail domain of the enzyme in tRNA binding.  相似文献   

3.
CCA-adding enzyme [ATP(CTP):tRNA nucleotidyltransferase], a template-independent RNA polymerase, adds the defined 'cytidine-cytidine-adenosine' sequence onto the 3' end of tRNA. The archaeal CCA-adding enzyme (class I) and eubacterial/eukaryotic CCA-adding enzyme (class II) show little amino acid sequence homology, but catalyze the same reaction in a defined fashion. Here, we present the crystal structures of the class I archaeal CCA-adding enzyme from Archaeoglobus fulgidus, and its complexes with CTP and ATP at 2.0, 2.0 and 2.7 A resolutions, respectively. The geometry of the catalytic carboxylates and the relative positions of CTP and ATP to a single catalytic site are well conserved in both classes of CCA-adding enzymes, whereas the overall architectures, except for the catalytic core, of the class I and class II CCA-adding enzymes are fundamentally different. Furthermore, the recognition mechanisms of substrate nucleotides and tRNA molecules are distinct between these two classes, suggesting that the catalytic domains of class I and class II enzymes share a common origin, and distinct substrate recognition domains have been appended to form the two presently divergent classes.  相似文献   

4.
The 3'-terminal CCA sequence of tRNA is faithfully constructed and repaired by the CCA-adding enzyme (ATP(CTP):tRNA nucleotidyltransferase) using CTP and ATP as substrates but no nucleic acid template. Until recently, all CCA-adding enzymes from all three kingdoms appeared to be composed of a single kind of polypeptide with dual specificity for adding both CTP and ATP; however, we recently found that in Aquifex aeolicus, which lies near the deepest root of the eubacterial 16 S rRNA-based phylogenetic tree, CCA addition represents a collaboration between closely related CC-adding and A-adding enzymes (Tomita, K. and Weiner, A. M. (2001) Science 294, 1334-1336). Here we show that in Synechocystis sp. and Deinococcus radiodurans, as in A. aeolicus, CCA is added by homologous CC- and A-adding enzymes. We also find that the eubacterial CCA-, CC-, and A-adding enzymes, as well as the related eubacterial poly(A) polymerases, each fall into phylogenetically distinct groups derived from a common ancestor. Intriguingly, the Thermatoga maritima CCA-adding enzyme groups with the A-adding enzymes, suggesting that these distinct tRNA nucleotidyltransferase activities can intraconvert over evolutionary time.  相似文献   

5.
Showing a high sequence similarity, the evolutionary closely related bacterial poly(A) polymerases (PAP) and CCA-adding enzymes catalyze quite different reactions—PAP adds poly(A) tails to RNA 3′-ends, while CCA-adding enzymes synthesize the sequence CCA at the 3′-terminus of tRNAs. Here, two highly conserved structural elements of the corresponding Escherichia coli enzymes were characterized. The first element is a set of amino acids that was identified in CCA-adding enzymes as a template region determining the enzymes' specificity for CTP and ATP. The same element is also present in PAP, where it confers ATP specificity. The second investigated region corresponds to a flexible loop in CCA-adding enzymes and is involved in the incorporation of the terminal A-residue. Although, PAP seems to carry a similar flexible region, the functional relevance of this element in PAP is not known. The presented results show that the template region has an essential function in both enzymes, while the second element is surprisingly dispensable in PAP. The data support the idea that the bacterial PAP descends from CCA-adding enzymes and still carries some of the structural elements required for CCA-addition as an evolutionary relic and is now fixed in a conformation specific for A-addition.  相似文献   

6.
P Y Shi  N Maizels    A M Weiner 《The EMBO journal》1998,17(11):3197-3206
The CCA-adding enzyme repairs the 3''-terminal CCA sequence of all tRNAs. To determine how the enzyme recognizes tRNA, we probed critical contacts between tRNA substrates and the archaeal Sulfolobus shibatae class I and the eubacterial Escherichia coli class II CCA-adding enzymes. Both CTP addition to tRNA-C and ATP addition to tRNA-CC were dramatically inhibited by alkylation of the same tRNA phosphates in the acceptor stem and TPsiC stem-loop. Both enzymes also protected the same tRNA phosphates in tRNA-C and tRNA-CC. Thus the tRNA substrate must remain fixed on the enzyme surface during CA addition. Indeed, tRNA-C cross-linked to the S. shibatae enzyme remains fully active for addition of CTP and ATP. We propose that the growing 3''-terminus of the tRNA progressively refolds to allow the solitary active site to reuse a single CTP binding site. The ATP binding site would then be created collaboratively by the refolded CC terminus and the enzyme, and nucleotide addition would cease when the nucleotide binding pocket is full. The template for CCA addition would be a dynamic ribonucleoprotein structure.  相似文献   

7.
Unusual synthesis by the Escherichia coli CCA-adding enzyme   总被引:2,自引:0,他引:2       下载免费PDF全文
Hou YM 《RNA (New York, N.Y.)》2000,6(7):1031-1043
The tRNA 3' end contains the conserved CCA sequence at the 74-76 positions. The CCA sequence is synthesized and maintained by the CCA-adding enzymes. The specificity of the Escherichia coli enzyme at each of the 74-76 positions was investigated using synthetic minihelix substrates that contain permuted 3' ends. Results here indicate that the enzyme has the ability to synthesize unusual 3' ends. When incubated with CTP alone, the enzyme catalyzed the addition of C74, C75, C76, and multiple Cs. Although the addition of C74 and C75 was as expected, that of C76 and multiple Cs was not. In particular, the addition of C76 generated CCC, which would have conflicted with the biological role of the enzyme. However, the presence of ATP prevented the synthesis of CCC and completely switched the specificity to CCA. The presence of ATP also had an inhibitory effect on the synthesis of multiple Cs. Thus, the E. coli CCA enzyme can be a poly(C) polymerase but its synthesis of poly(C) is regulated by the presence of ATP. These features led to a model of CCA synthesis that is independent of a nucleic acid template. The synthesis of poly(C) by the CCA-adding enzyme is reminiscent of that of poly(A) by poly(A) polymerase and it provides a functional rationale for the close sequence relationship between these two enzymes in the family of nucleotidyltransferases.  相似文献   

8.
The CCA-adding enzyme (tRNA nucleotidyltransferase) builds and repairs the 3' end of tRNA. A single active site adds both CTP and ATP, but the enzyme has no nucleic acid template, and tRNA does not translocate or rotate during C75 and A76 addition. We modeled the structure of the class I archaeal Sulfolobus shibatae CCA-adding enzyme on eukaryotic poly(A) polymerase and mutated residues in the vicinity of the active site. We found mutations that specifically affected C74, C75, or A76 addition, as well as mutations that progressively impaired addition of CCA. Many of these mutations clustered in an evolutionarily versatile beta-turn located between strands 3 and 4 of the nucleotidyltransferase domain. Our mutational analysis confirms and extends recent crystallographic studies of the highly homologous Archaeoglobus fulgidus enzyme. We suggest that the unusual phenotypes of the beta-turn mutants reflect the consecutive conformations assumed by the beta-turn as it presents the discriminator base N73, then C74, and finally C75 to the active site without translocation or rotation of the tRNA acceptor stem. We also suggest that beta-turn mutants can affect nucleotide selection because the growing 3' end of tRNA must be properly positioned to serve as part of the ribonucleoprotein template that selects the incoming nucleotide.  相似文献   

9.
Seth M  Thurlow DL  Hou YM 《Biochemistry》2002,41(14):4521-4532
The CCA-adding enzymes [ATP(CTP):tRNA nucleotidyl transferases], which catalyze synthesis of the conserved CCA sequence to the tRNA 3' end, are divided into two classes. Recent studies show that the class II Escherichia coli CCA-adding enzyme synthesizes poly(C) when incubated with CTP alone, but switches to synthesize CCA when incubated with both CTP and ATP. Because the poly(C) activity can shed important light on the mechanism of the untemplated synthesis of CCA, it is important to determine if this activity is also present in the class I CCA enzymes, which differ from the class II enzymes by significant sequence divergence. We show here that two members of the class I family, the archaeal Sulfolobus shibatae and Methanococcus jannaschii CCA-adding enzymes, are also capable of poly(C) synthesis. These two class I enzymes catalyze poly(C) synthesis and display a response of kinetic parameters to the presence of ATP similar to that of the class II E. coli enzyme. Thus, despite extensive sequence diversification, members of both classes employ common strategies of nucleotide addition, suggesting conservation of a mechanism in the development of specificity for CCA. For the E. coli enzyme, discrimination of poly(C) from CCA synthesis in the intact tRNA and in the acceptor-TPsiC domain is achieved by the same kinetic strategy, and a mutation that preferentially affects addition of A76 but not poly(C) has been identified. Additionally, we show that enzymes of both classes exhibit a processing activity that removes nucleotides in the 3' to 5' direction to as far as position 74.  相似文献   

10.
The CCA-adding enzyme (ATP:tRNA adenylyltransferase or CTP:tRNA cytidylyltransferase (EC )) generates the conserved CCA sequence responsible for the attachment of amino acid at the 3' terminus of tRNA molecules. It was shown that enzymes from various organisms strictly recognize the elbow region of tRNA formed by the conserved D- and T-loops. However, most of the mammalian mitochondrial (mt) tRNAs lack consensus sequences in both D- and T-loops. To characterize the mammalian mt CCA-adding enzymes, we have partially purified the enzyme from bovine liver mitochondria and determined cDNA sequences from human and mouse dbESTs by mass spectrometric analysis. The identified sequences contained typical amino-terminal peptides for mitochondrial protein import and had characteristics of the class II nucleotidyltransferase superfamily that includes eukaryotic and eubacterial CCA-adding enzymes. The human recombinant enzyme was overexpressed in Escherichia coli, and its CCA-adding activity was characterized using several mt tRNAs as substrates. The results clearly show that the human mt CCA-adding enzyme can efficiently repair mt tRNAs that are poor substrates for the E. coli enzyme although both enzymes work equally well on cytoplasmic tRNAs. This suggests that the mammalian mt enzymes have evolved so as to recognize mt tRNAs with unusual structures.  相似文献   

11.
We describe the purification, cloning, and characterization of the CCA-adding enzyme [ATP(CTP):tRNA nucleotidyl transferase] from the thermophilic archaebacterium, Sulfolobus shibatae. Characterization of an archaeal CCA-adding enzyme provides formal proof that the CCA-adding activity is present in all three contemporary kingdoms. Antibodies raised against recombinant, expressed Sulfolobus CCA-adding enzyme reacted specifically with the 48-kDa protein and fully depleted all CCA-adding activity from S. shibatae crude extract. Thus, the cloned cca gene encodes the only CCA-adding activity in S. shibatae. Remarkably, the archaeal CCA-adding enzyme exhibits no strong homology to either the eubacterial or eukaryotic CCA-adding enzymes. Nonetheless, it does possess the active site signature G[SG][LIVMFY]xR[GQ]x5,6D[LIVM][CLIVMFY]3-5 of the nucleotidyltransferase superfamily identified by Holm and Sander (1995, Trends Biochem Sci 20:345-347) and sequence comparisons show that all known CCA-adding enzymes and poly(A) polymerases are contained within this superfamily. Moreover, we propose that the superfamily can now be divided into two (and possibly three) subfamilies: class I, which contains the archaeal CCA-adding enzyme, eukaryotic poly(A) polymerases, and DNA polymerase beta; class II, which contains eubacterial and eukaryotic CCA-adding enzymes, and eubacterial poly(A) polymerases; and possibly a third class containing eubacterial polynucleotide phosphorylases. One implication of these data is that there may have been intraconversion of CCA-adding and poly(A) polymerase activities early in evolution.  相似文献   

12.
13.
The CCA‐adding enzyme synthesizes the CCA sequence at the 3′ end of tRNA without a nucleic acid template. The crystal structures of class II Thermotoga maritima CCA‐adding enzyme and its complexes with CTP or ATP were determined. The structure‐based replacement of both the catalytic heads and nucleobase‐interacting neck domains of the phylogenetically closely related Aquifex aeolicus A‐adding enzyme by the corresponding domains of the T. maritima CCA‐adding enzyme allowed the A‐adding enzyme to add CCA in vivo and in vitro. However, the replacement of only the catalytic head domain did not allow the A‐adding enzyme to add CCA, and the enzyme exhibited (A, C)‐adding activity. We identified the region in the neck domain that prevents (A, C)‐adding activity and defines the number of nucleotide incorporations and the specificity for correct CCA addition. We also identified the region in the head domain that defines the terminal A addition after CC addition. The results collectively suggest that, in the class II CCA‐adding enzyme, the head and neck domains collaboratively and dynamically define the number of nucleotide additions and the specificity of nucleotide selection.  相似文献   

14.
We explored the specificity and nature of the nucleotide-binding pocket of the CCA-adding enzyme (tRNA nucleotidyltransferase) by using CTP and ATP analogs as substrates for a panel of class I and class II enzymes. Overall, class I and class II enzymes displayed remarkably similar substrate requirements, implying that the mechanism of CCA addition is conserved between enzyme classes despite the absence of obvious sequence homology outside the active site signature sequence. CTP substrates are more tolerant of base modifications than ATP substrates, but sugar modifications prevent incorporation of both CTP and ATP analogs by class I and class II enzymes. Use of CTP analogs (zebularine, pseudoisocytidine, 6-azacytidine, but not 6-azauridine) suggests that base modifications generally do not interfere with recognition or incorporation of CTP analogs by either class I or class II enzymes, and that UTP is excluded because N-3 is a positive determinant and/or O-4 is an antideterminant. Use of ATP analogs (N6-methyladenosine, diaminopurine, purine, 2-aminopurine, and 7-deaza-adenosine, but not guanosine, deoxyadenosine, 2'-O-methyladenosine, 2'-deoxy-2'-fluoroadenosine, or inosine) suggests that base modifications generally do not interfere with recognition or incorporation of ATP analogs by either class I or class II enzymes, and that GTP is excluded because N-1 is a positive determinant and/or the 2-amino and 6-keto groups are antideterminants. We also found that the 3'-terminal sequence of the growing tRNA substrate can affect the efficiency or specificity of subsequent nucleotide addition. Our data set should allow rigorous evaluation of structural hypotheses for nucleotide selection based on existing and future crystal structures.  相似文献   

15.
The primase fragment of bacteriophage T7 gene 4 protein catalyzes the synthesis of oligoribonucleotides in the presence of ATP, CTP, Mg(2+) (or Mn(2+)), and DNA containing a primase recognition site. During chain initiation, ATP binds with a K(m) of 0.32 mM, and CTP binds with a K(m) of 0.85 mM. Synthesis of the dinucleotides proceeds at a rate of 3.8/s. The dinucleotide either dissociates or is extended to a tetranucleotide. The primase preferentially inserts ribonucleotides forming Watson-Crick base pairs with the DNA template >200-fold more rapidly than other ribo- or deoxynucleotides. 3'-dCTP binds the primase with a similar affinity as CTP and is incorporated as a chain terminator at a rate (1)/(100) that of CTP. ATP analogues alpha,beta-methylene ATP, beta,gamma-methylene ATP, and beta,gamma-imido ATP are incorporated by the primase fragment at the 5'-ends of the oligoribonucleotides but not at the 3'-ends. A model is presented in which the primase fragment utilizes two nucleotide-binding sites, one for the initiating ATP and one for the nucleoside triphosphate which elongates the primer on the 3'-end. The initiation site binds ATP or oligoribonucleotides, whereas the elongation site binds ATP or CTP as directed by the template.  相似文献   

16.
The CCA-adding enzyme [ATP(CTP):tRNA nucleotidyltransferase] catalyzes the addition and regeneration of the 3'-terminal CCA sequence of tRNAs. We show that the CCA-adding enzyme will specifically add a CCA terminus to synthetic full-length tDNA and to DNA oligonucleotides corresponding to the "top half" of tRNA-the acceptor stem and TpsiC stem-loop of tRNA. CCA addition to the top half tDNA minihelices requires a 2' as well as a 3' OH at the 3' terminus of the tDNA. Addition also depends on the length of the base paired stem, and is facilitated by, but is not dependent upon, the presence of a TpsiC loop. These results provide further evidence for independent functions of the top and bottom halves of tRNA, and support the hypothesis that these two structurally distinct and functionally independent domains evolved independently.  相似文献   

17.
The physical basis of ATP binding and activation of DNA polymerase III holoenzyme was studied by an ultraviolet irradiation cross-linking technique. ATP and dATP were photocrosslinked to the alpha, tau, gamma, and delta subunits of holoenzyme; photocrosslinking of dATP was competitively inhibited by ATP. No photocrosslinking was observed with GTP or CTP, nor did GTP, CTP, or UTP inhibit cross-linking of ATP. ADP and adenosine 5'-O-(3-thio)-triphosphate, both potent inhibitors of ATP activation of holoenzyme, inhibited cross-linking of ATP to tau, gamma, and delta subunits, but not to the alpha subunit, suggesting that one or more of these subunits are ATP (or dATP)-binding sites. Photocrosslinking of dTTP to the ATP-activated holoenzyme was exclusively to the epsilon subunit, the dnaQ ( mutD ) gene product; dCTP and dGTP were not photocrosslinked to any subunit. Binding of dTTP was enhanced by ATP, but by no other nucleotide (or deoxynucleotide). This binding of dTTP to epsilon, a subunit likely responsible for regulation of proofreading by the holoenzyme, may function in the control of the fidelity of replication.  相似文献   

18.
CCA-adding enzymes (tRNA nucleotidyltransferases) are responsible for the maturation or repair of the functional 3' end of tRNAs. These enzymes are remarkable because they polymerize the essential nucleotides CCA onto the 3' terminus of tRNA precursors without using a nucleic acid template. Recent crystal structures, plus three decades of enzymology, have revealed the elegant mechanisms by which CCA-adding enzymes achieve their substrate specificity in a nucleic acid template independent fashion. The class I CCA-adding enzyme employs both an arginine sidechain and backbone phosphates of the bound tRNA to recognize incoming nucleotides. It switches from C to A addition through changes in the size and shape of the nucleotide-binding pocket, which is progressively altered by the elongating 3' terminus of the tRNA. By contrast, the class II CCA-adding enzyme uses only amino acid sidechains, which form a protein template for incoming nucleotide selection.  相似文献   

19.
Acanthamoeba myosin IC has a single 129-kDa heavy chain and a single 17-kDa light chain. The heavy chain comprises a 75-kDa catalytic head domain with an ATP-sensitive F-actin-binding site, a 3-kDa neck domain, which binds a single 17-kDa light chain, and a 50-kDa tail domain, which binds F-actin in the presence or absence of ATP. The actin-activated MgATPase activity of myosin IC exhibits triphasic actin dependence, apparently as a consequence of the two actin-binding sites, and is regulated by phosphorylation of Ser-329 in the head. The 50-kDa tail consists of a basic domain, a glycine/proline/alanine-rich (GPA) domain, and a Src homology 3 (SH3) domain, often referred to as tail homology (TH)-1, -2, and -3 domains, respectively. The SH3 domain divides the TH-3 domain into GPA-1 and GPA-2. To define the functions of the tail domains more precisely, we determined the properties of expressed wild type and six mutant myosins, an SH3 deletion mutant and five mutants truncated at the C terminus of the SH3, GPA-2, TH-1, neck and head domains, respectively. We found that both the TH-1 and GPA-2 domains bind F-actin in the presence of ATP. Only the mutants that retained an actin-binding site in the tail exhibited triphasic actin-dependent MgATPase activity, in agreement with the F-actin-cross-linking model, but truncation reduced the MgATPase activity at both low and high actin concentrations. Deletion of the SH3 domain had no effect. Also, none of the tail domains, including the SH3 domain, affected either the K(m) or V(max) for the phosphorylation of Ser-329 by myosin I heavy chain kinase.  相似文献   

20.
The binding of ATP to pertussis toxin and its components, the A subunit and B oligomer, was investigated. Whereas, radiolabeled ATP bound to the B oligomer and pertussis toxin, no binding to the A subunit was observed. The binding of [3H]ATP to pertussis toxin and the B oligomer was inhibited by nucleotides. The relative effectiveness of the nucleotides was shown to be ATP greater than ATP greater than GTP greater than CTP greater than TTP for pertussis toxin and ATP greater than GTP greater than TTP greater than CTP for the B oligomer. Phosphate ions inhibited the binding of [3H]ATP to pertussis toxin in a competitive manner; however, the presence of phosphate ions was essential for binding of ATP to the B oligomer. The toxin substrate, NAD, did not affect the binding of [3H]ATP to pertussis toxin, although the glycoprotein fetuin significantly decreased binding. These results suggest that the binding site for ATP is located on the B oligomer and is distinct from the enzymatically active site but may be located near the eukaryotic receptor binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号