首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tobacco etch potyvirus (TEV) polyprotein is proteolytically processed by three viral proteinases (NIa, HC-Pro, and P1). While the NIa and HC-Pro proteinases each provide multiple functions essential for viral infectivity, the role of the P1 proteinase beyond its autoproteolytic activity is understood poorly. To determine if P1 is necessary for genome amplification and/or virus movement from cell to cell, a mutant lacking the entire P1 coding region (delta P1 mutant) was produced with a modified TEV strain (TEV-GUS) expressing beta-glucuronidase (GUS) as a reporter, and its replication and movement phenotypes were assayed in tobacco protoplasts and plants. The delta P1 mutant accumulated in protoplasts to approximately 2 to 3% the level of parental TEV-GUS, indicating that the P1 protein may contribute to but is not strictly required for viral RNA amplification. The delta P1 mutant was capable of cell-to-cell and systemic (leaf-to-leaf) movement in plants but at reduced rates compared with parental virus. This is in contrast to the S256A mutant, which encodes a processing-defective P1 proteinase and which was nonviable in plants. Both delta P1 and S256A mutants were complemented by P1 proteinase expressed in a transgenic host. In transgenic protoplasts, genome amplification of the delta P1 mutant relative to parental virus was stimulated five- to sixfold. In transgenic plants, the level of accumulation of the delta P1 mutant was stimulated, although the rate of cell-to-cell movement was the same as in nontransgenic plants. Also, the S256A mutant was capable of replication and systemic infection in P1-expressing transgenic plants. These data suggest that, in addition to providing essential processing activity, the P1 proteinase functions in trans to stimulate genome amplification.  相似文献   

2.
Tobacco etch potyvirus engineered to express the reporter protein beta-glucuronidase (TEV-GUS) was used for direct observation and quantitation of virus translocation in plants. Four TEV-GUS mutants were generated containing capsid proteins (CPs) with single amino acid substitutions (R154D and D198R), a double substitution (DR), or a deletion of part of the N-terminal domain (delta N). Each modified virus replicated as well as the parental virus in protoplasts, but was defective in cell-to-cell movement through inoculated leaves. The R154D, D198R and DR mutants were restricted essentially to single, initially infected cells. The delta N variant exhibited slow cell-to-cell movement in inoculated leaves, but was unable to move systemically due to a lack of entry into or replication in vascular-associated cells. Both cell-to-cell and systemic movement defects of each mutant were rescued in transgenic plants expressing wild-type TEV CP. Cell-to-cell movement, but not systemic movement, of the DR mutant was rescued partially in transgenic plants expressing TEV CP lacking the C-terminal domain, and in plants expressing CP from the heterologous potyvirus, potato virus Y. Despite comparable levels of accumulation of parental virus and each mutant in symptomatic tissue of TEV CP-expressing transgenic plants, virions were detected only in parental virus- and delta N mutant-infected plants, as revealed using three independent assays. These data suggest that the potyvirus CP possesses distinct, separable activities required for virion assembly, cell-to-cell movement and long-distance transport.  相似文献   

3.
Tobacco etch virus (TEV) encodes three proteinases that catalyze processing of the genome-encoded polyprotein. The P1 proteinase originates from the N terminus of the polyprotein and catalyzes proteolysis between itself and the helper component proteinase (HC-Pro). Mutations resulting in substitution of a single amino acid, small insertions, or deletions were introduced into the P1 coding sequence of the TEV genome. Deletion of the N-terminal, nonproteolytic domain of P1 had only minor effects on virus infection in protoplasts and whole plants. Insertion mutations that did not impair proteolytic activity had no measurable effects regardless of whether the modification affected the N-terminal nonproteolytic or C-terminal proteolytic domain. In contrast, three mutations (termed S256A, F, and delta 304) that debilitated P1 proteolytic activity rendered the virus nonviable, whereas a fourth proteinase-debilitating mutation (termed C) resulted in a slow-infection phenotype. A strategy was devised to determine whether the defect in the P1 mutants was due to an inactive proteinase domain or due simply to a lack of proteolytic maturation between P1 and HC-Pro. Sequences coding for a surrogate cleavage site recognized by the TEV NIa proteinase were inserted into the genome of each processing-debilitated mutant at positions that resulted in NIa-mediated proteolysis between P1 and HC-Pro. The infectivity of each mutant was restored by these second-site modifications. These data indicate that P1 proteinase activity is not essential for viral infectivity but that separation of P1 and HC-Pro is required. The data also provide evidence that the proteinase domain is involved in additional, nonproteolytic functions.  相似文献   

4.
Phage T4 deletion mutants that are folate analog resistant (far) and contain deletions in the region of the T4 genome near denV have been isolated previously. We showed that one of these mutants (T4farP12) expressed normal denV gene activity, whereas another mutant (T4farP13) was defective in the denV gene. The rII-distal (right) physical endpoints of these deletions defined the limits of the interval in which the rII-proximal (left) endpoint of the denV gene should be located. The deletion endpoints were identified by restriction and Southern hybridization analyses of phage derivatives containing deoxycytidine instead of hydroxymethyldeoxycytidine in their DNAs. The results of these analyses localized the rII-proximal (left) end of the denV gene to a region between 62.4 and 64.3 kilobases on the T4 physical map. denV+ phage resulted from marker rescue with two of five denV- alleles tested, using plasmids containing a 1.8-kilobase fragment from this region or a 179-base-pair terminal fragment derived from it. Sequencing of the 179-base-pair fragment from wild-type DNA showed a 130-base-pair open reading frame with its termination codon at the rII-proximal end. Confirmation that this open reading frame is part of the denV coding sequence was obtained by identifying a TAG amber codon in the homologous DNA derived from a denV amber mutant strain. This mutant strain rescued the denV+ allele from plasmids containing the wild-type sequence. An adjacent overlapping restriction fragment was also cloned, permitting determination of the remaining denV gene sequence. Based on these results, the 3' end of the coding region of the denV locus was mapped to kilobase position 64.07 on the T4 physical map, and the 5' end was mapped to position 64.48.  相似文献   

5.
The genome of brome mosaic virus (BMV) is comprised of three (+) strand RNAs, each containing a similar, highly structured, 200 base long sequence at its 3' end. A 134 base subset of this sequence contains signals directing interaction of the viral RNA with BMV RNA replicase, ATP,CTP:tRNA nucleotidyl transferase and aminoacyl tRNA synthetase. A series of mutants containing deletions within this region, previously constructed and tested in vitro for the effect on replication and aminoacylation activities, has now been assayed in vitro for adenylation function and in vivo for ability to replicate in isolated protoplasts and whole plants. These tests indicate that features of viral RNA recognized by BMV replicase overlap those directing adenylation, but are distinct from those directing aminoacylation. Consequently, the lethality of a deletion preferentially inhibiting aminoacylation suggests that this function may have an essential role contributing to viral replication in vivo. An RNA3 mutant bearing a 20-base deletion yielding normal levels of aminoacylation and enhanced levels of replicase template activity and adenylation in vitro was able to replicate in protoplasts and plants; however, its accumulation in protoplasts was reduced relative to wild-type. This suggests that additional functions affecting the replication and accumulation of viral RNA reside in the conserved 3' sequence.  相似文献   

6.
The RNA genome of tobacco etch potyvirus (TEV) was engineered to express bacterial beta-glucuronidase (GUS) fused to the virus helper component proteinase (HC-Pro). It was shown previously that prolonged periods (approximately 1 month) of TEV-GUS propagation in plants resulted in the appearance of spontaneous deletion variants. Nine deletion mutants were identified by nucleotide sequence analysis of 40 cDNA clones obtained after polymerase chain reaction amplification. The mutants were missing between 1,741 and 2,074 nucleotides from TEV-GUS, including the sequences coding for most of GUS and the N-terminal region of HC-Pro. This region of HC-Pro contains determinants involved in helper component activity during aphid transmission, as well as a highly conserved series of cysteine residues. The deletion variants were shown to replicate and move systemically without the aid of a helper virus. Infectious viruses harboring the two largest HC-Pro deletions (termed TEV-2del and TEV-7del) were reconstructed by subcloning the corresponding mutated regions into full-length DNA copies of the TEV genome. Characterization of these and additional variants derived by site-directed mutagenesis demonstrated that deletion of sequences coding for the HC-Pro N-terminal domain had a negative effect on accumulation of viral RNA and coat protein. The TEV-2del variant possessed an aphid-nontransmissible phenotype that could be rescued partially by prefeeding of aphids on active HC-Pro from another potyvirus. These data suggest that the N-terminal domain of HC-Pro or its coding sequence enhances virus replication or genome expression but does not provide an activity essential for these processes. The function of this domain, as well as a proposed deletion mechanism involving nonhomologous recombination, is discussed.  相似文献   

7.
8.
9.
10.
In an attempt to experimentally define the roles of viral proteins encoded by the B19 genome in the viral life cycle, we utilized the B19 infectious clone constructed in our previous study to create two groups of B19 mutant genomes: (i) null mutants, in which either a translational initiation codon for each of these viral genes was substituted by a translational termination codon or a termination codon was inserted into the open reading frame by a frameshift; and (ii) a deletion mutant, in which half of the hairpin sequence was deleted at both the 5' and the 3' termini. The impact of these mutations on viral infectivity, DNA replication, capsid protein production, and distribution was systematically examined. Null mutants of the NS and VP1 proteins or deletion of the terminal hairpin sequence completely abolished the viral infectivity, whereas blocking expression of the 7.5-kDa protein or the putative protein X had no effect on infectivity in vitro. Blocking expression of the proline-rich 11-kDa protein significantly reduced B19 viral infectivity, and protein studies suggested that the expression of the 11-kDa protein was critical for VP2 capsid production and trafficking in infected cells. These findings suggest a previously unrecognized role for the 11-kDa protein, and together the results enhance our understanding of the key features of the B19 viral genome and proteins.  相似文献   

11.
12.
13.
14.
The signals that control initiation of translation in plants are not well understood. To dissect some of these signals, we used a plant viral mRNA on which protein synthesis initiates at two out-of-frame start codons. On the large subgenomic RNA (sgRNA1) of barley yellow dwarf virus-PAV serotype, the coat protein (CP) and overlapping 17K open reading frames (ORFs) are translated beginning at the first and second AUG codons, respectively. The roles of bases at positions -3 and +4 relative to the AUG codons in efficiency of translation initiation were investigated by translation of sgRNA1 mutants in a cell-free extract and by expression of a reporter gene from mutant sgRNA1 leaders in protoplasts. The effects of mutations that disrupted and restored secondary structure encompassing the CP AUG independently of, and in combination with, changes to bases -3 and +4 were also examined. Partial digestion of the 5' end of the sgRNA1 leader with structure-sensitive nucleases gave products that were consistent with the predicted secondary structure. Secondary structure had an overall inhibitory effect on translation of both ORFs. In general, the "Kozak rules" of start codon preference predominate in determining start codon choice. Unexpectedly, for a given CP AUG sequence context, changes that decreased initiation at the downstream 17K AUG also reduced initiation at the CP AUG. To explain this observation, we propose a new model in which pausing of the ribosome at the second AUG allows increased initiation at the first AUG. This detailed analysis of the roles of primary and secondary structure in controlling translation initiation should be of value for understanding expression of any plant gene and in the design of artificial constructs.  相似文献   

15.
A series of spontaneous and ethyl methanesulfonate-induced 6-thioguanine-resistant mutants were isolated in the CHO-10T5 cell line. This cell line was constructed by the introduction of a shuttle vector containing the Escherichia coli gpt gene into a hypoxanthine-guanine phosphoribosyltransferase deficient derivative of the Chinese hamster cell line CHO-K1. Shuttle vector sequences were recovered from many of the mutant cell lines by the COS cell fusion technique and the DNA base sequence of the gpt genes was determined whenever possible.

The base sequences were determined for gpt genes recovered from 29 spontaneous mutants. Of these 29 mutants, 9 have single base substitutions, 1 has a small duplication, 17 have simple deletions, 1 has a deletion with additional bases inserted at the deletion site, and 1 has no change in the gpt coding sequence. Many of the deletions were less than 20 basepairs in length and several occurred in a region previously observed to be a hotspot for spontaneous deletions. The generation of the deletion/insertion mutation may have involved a quasi-palindromic intermediate.

A total of 59 ethyl methansesulfonate-induced mutants were isolated and vector sequences were recovered from 50 mutants. All 50 mutants sequenced had single base substitutions and most (45) were G:C to A:T transitions. While there were no strong hotspots in this collection of mutations, the site distribution was obviously nonrandom. Many of the G:C to A:T transitions either produced a nonsense codon or occurred at glycine codons.  相似文献   


16.
The folC gene of Escherichia coli, cloned in a pUC19 vector, was mutagenized by progressive deletions from both the 5' and the 3' ends and by TAB linker insertion. A number of 5'-deleted genes, which had the initiator ATG codon removed, produced a truncated gene product, in reduced amounts, from a secondary initiation site. The most likely position of this site at a GTG codon located 35 codons downstream of the normal start site. This product could complement the folC mutation in E. coli strain SF4 as well as a strain deleted in the folC gene. The specific activity of extracts of the mutant enzyme are 4-16% that of the wild type enzyme for the folylpolyglutamate synthetase activity and 6-19% for the dihydrofolate synthetase activity. The relative amount of protein expressed by the mutant, compared to the wild type, in maxicells was comparable to the relative specific activity, suggesting that the kcat of the mutant enzyme is similar to that of the wild type. Mutants with up to 14 amino acids deleted from the carboxy terminal could still complement the folC deletion mutant. Seven out of ten linker insertions dispersed through the coding region of the gene showed complementation of the folC mutation in strain SF4 but none of these insertion mutants were able to complement the strain containing a deleted folC gene. None of the carboxy terminal or linker insertion mutants had a specific activity greater than 0.5% that of the wild type enzyme. The dihydrofolate synthetase and folylpolyglutamate synthetase activities behaved similarly in all mutants, both retaining a large fraction of the wild type activity in the amino terminal deletions and both being very low in the carboxy terminal deletions and linker insertion mutants. These studies are consistent with a single catalytic site for the two activities catalyzed by this enzyme.  相似文献   

17.
Yu SS  Kim JM  Kim S 《Journal of virology》2000,74(18):8775-8780
We have identified a previously unknown nucleotide sequence important for the packaging of murine leukemia virus. This nucleotide sequence is located downstream from the stop codon of the env gene but does not overlap the polypurine tract. Deletion of 17 bp from this region resulted in a more than 10-fold decrease in viral titer. Consistent with this result, the deletion mutant showed a 20- to 30-fold drop in the amount of virion RNA in the culture supernatant. The total amount of virion protein in the culture supernatant was comparable for the deletion mutant and the parental virus, suggesting that the mutant construct could release the empty viral particles. These results suggested that the packaging signal sequence might be present at the two extreme sites of the viral genome, one in the region around the splice donor sequence downstream from the 5' long terminal repeat (LTR) and the other immediately upstream from the 3' LTR. Implications for gene therapy, especially in regard to construction of retroviral vectors and packaging constructs, are discussed.  相似文献   

18.
We have constructed retroviral expression vectors by manipulation of the Moloney murine leukemia virus genome such that an exogenous DNA sequence may be inserted and subsequently expressed when introduced into mammalian cells. A series of N-terminal deletions of the v-mos oncogene was constructed and assayed for biological activity with these retroviral expression vectors. The results of the deletion analysis demonstrate that the region of p37mos coding region upstream of the third methionine codon is dispensable with respect to transformation. However, deletion mutants of v-mos which allow initiation of translation at the fourth methionine codon have lost the biological activity of the parental v-mos gene. Furthermore, experiments were also carried out to define the C-terminal limit of the active region of p37mos by the construction of premature termination mutants by the insertion of a termination oligonucleotide. Insertion of the oligonucleotide just 69 base pairs upstream from the wild-type termination site abolished the focus-forming ability of v-mos. Thus, we have shown the N-terminal limit of the active region of p37mos to be between the third and fourth methionines, while the C-terminal limit is within the last 23 amino acids of the protein.  相似文献   

19.
The translation of human triosephosphate isomerase (TPI) mRNA normally terminates at codon 249 within exon 7, the final exon. Frameshift and nonsense mutations of the type that cause translation to terminate prematurely at or upstream of codon 189 within exon 6 reduce the level of nuclear TPI mRNA to 20 to 30% of normal by a mechanism that is not a function of the distance of the nonsense codon from either the translation initiation or termination codon. In contrast, frameshift and nonsense mutations of another type that cause translation to terminate prematurely at or downstream of codon 208, also within exon 6, have no effect on the level of nuclear TPI mRNA. In this work, quantitations of RNA that derived from TPI alleles in which nonsense codons had been generated between codons 189 and 208 revealed that the boundary between the two types of nonsense codons resides between codons 192 and 195. The analysis of TPI gene insertions and deletions indicated that the positional feature differentiating the two types of nonsense codons is the distance of the nonsense codon upstream of intron 6. For example, the movement of intron 6 to a position downstream of its normal location resulted in a concomitant downstream movement of the boundary between the two types of nonsense codons. The analysis of intron 6 mutations indicated that the intron 6 effect is stipulated by the 88 nucleotides residing between the 5' and 3' splice sites. Since the deletion of intron 6 resulted in only partial abrogation of the nonsense codon-mediated reduction in the level of TPI mRNA, other sequences within TPI pre-mRNA must function in the effect. One of these sequences may be intron 2, since the deletion of intron 2 also resulted in partial abrogation of the effect. In experiments that switched introns 2 and 6, the replacement of intron 6 with intron 2 was of no consequence to the effect of a nonsense codon within either exon 1 or exon 6. In contrast, the replacement of intron 2 with intron 6 was inconsequential to the effect of a nonsense codon in exon 6 but resulted in partial abrogation of a nonsense codon in exon 1.  相似文献   

20.
Multiple mutations were found in the human immunodeficiency virus pol gene following treatment of an AIDS patient with antiretroviral drugs. After approximately 2.5 years of monthly alternating therapy with 3'-azido-3'-deoxythymidine (AZT) and 2',3'-dideoxycytidine (ddC), most of the pol sequences amplified from the patient's peripheral blood mononuclear cell DNA contained known AZT resistance mutations at codons 41, 67, and 215 and a putative ddC resistance mutation at codon 69 as well as other novel mutations. These mutations persisted for 6 months after the patient was switched to 2',3'-dideoxyinosine monotherapy. Mutations known to be associated with 2',3'-dideoxyinosine resistance did not occur during this time. Antiviral susceptibility testing of point mutants, introduced into the genetic background of laboratory strain NL4-3, showed that the codon 41 mutation antagonized ddC resistance when present with the codon 69 mutation. However, this antagonism was not found with a chimeric mutant containing the patient's pol gene sequence from codons 25 to 218, implying that other mutations compensated for the antagonism. Thus, alternating therapy with AZT and ddC resulted in the selection of viruses resistant to both drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号