首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Membranes of neuron-like NG108-15 hybrid cells bind [3H]quinuclidinyl benzilate (QNB) with high affinity and specificity. Greater than 90% of total [3H]QNB binding is to sites having the pharmacological specificity of muscarinic acetylcholine receptors. Three significant features characterize the interaction of ligands with these sites: (1) Specific binding of [3H]QNB at equilibrium follows a simple adsorption isotherm with an apparent KD of 1 × 10?10 M; (2) Rates of [3H]QNB association and dissociation are biphasic and, as the binding reaction proceeds, the fraction of readily dissociable [3H]QNB decreases; (3) Competition against [3H]QNB for specific binding sites by antagonists gives a slope of 1 when analyzed on Hill plots, but competition for binding sites by agonists gives a slope of less than 1. A simple two-step model for activation is proposed to account for these features.  相似文献   

2.
[3H]Nimodipine binding was studied in isolated myocytes from rat heart and in partially purified sarcolemma, sarcoplasmic reticulum and mitochondrial fractions from dog heart. In isolated myocytes, the density of [3H]nimodipine specific sites (106 per cell) was close to the density of [3H]QNB sites (0.8 × 106 per cell) and higher than that of [3H]DHA sites (0.2 × 106 per cell). During subcellular fractionation, [3H]nimodipine binding did not copurify with plasma membrane markers. The highest densities were found in fractions enriched in sarcolemma or in sarcoplasmic reticulum. No specific binding was found in mitochondria. These results indicate that the localization of [3H]nimodipine sites is not restricted to areas of the plasma membrane rich in β-adrenoceptors, muscarinic receptors and sodium pump sites.  相似文献   

3.
The regulation of ligand binding to the muscarinic acetylcholine receptor in developing chick heart has been studied using the radiolabeled antagonist [3H]quinuclidinyl benzilate (QNB). In assays containing only buffer and a source of receptor protein, the antagonist radioligand bound to a single, high affinity state of the receptor. If Mg2+ and EDTA were added, [3H]QNB bound to a single, low affinity state. The guanine nucleotide analog, guanylylimidodiphosphate [Gpp(NH)p], reversed the effect of Mg2+EDTA so that [3H]QNB again bound only to a single, high affinity state. Sodium could also reverse the effect of Mg2+EDTA on antagonist binding but the effects of sodium and Gpp(NH)p on [3H]QNB binding were not additive.  相似文献   

4.
Cholinergic muscarinic receptors were identified in AtT-20/D16-16 (AtT-20) cell membranes by receptor binding techniques and the effect of carbachol on basal and stimulated cyclic AMP formation and ACTH release was investigated. Carbachol markedly decreased the stimulatory effect of the adenylate cyclase activator, forskolin, on both cyclic AMP formation and ACTH secretion. Carbachol also reduced forskolin-stimulated adenylate cyclase activity. The stimulatory effects of (-) isoproterenol on cyclic nucleotide formation and ACTH secretion were also blocked by carbachol. The inhibitory effects of carbachol on (-) isoproterenol-stimulated cyclic AMP synthesis and ACTH secretion were reversed by the muscarinic antagonist, atropine, and not by the nicotinic antagonist, gallamine. These data suggest that in AtT-20 cells, inhibition of ACTH secretion may be regulated by activation of muscarinic receptors coupled negatively to adenylate cyclase.  相似文献   

5.
Nervous tissue preparations from Locusta migratoria specifically bind potent nicotinic (α-bungarotoxin) and muscarinic (quinuclidinyl benzilate) ligands. Binding properties and pharmacological data indicate that the central nervous system of the locust contains at least two distinct classes of receptors. Subcellular fractionation experiments revealed that the receptor activity is enriched in the synaptosomal fraction. In the head as well as in the thoracic ganglia the nicotinic acetylcholine receptors were found to be much more abundant than the muscarinic binding sites; whereas in mouse brain the muscarinic receptor type predominates.  相似文献   

6.
By Scatchard plot analysis of [3H]QNB (quinuclidinyl benzilate) binding, there are 2×105 muscarinic sites/cell with aK d about 10 nM in N4TG1 neuroblastoma cells. We have now examined a group of compounds structurally related to aprophen and QNB for their ability to compete with the binding of QNB to the muscarini receptor. Using this structure-inhibition relationship, the functional groups of the muscarinic ligand necessary for binding were partially characterized. It was found that the quinuclidinyl ring structure of QNB can be substituted by either alkane, H, or pyrrolidine at the N without loosing their ability to bind. The addition to the quinuclidinyl ring increases the bulk of the structure and decreases binding. Like the benzilate in QNB, a similar hydrophobic structure is apparently required for the binding.  相似文献   

7.
The effects of the muscarinic antagonist quinuclidinyl benzilate (QNB) on transmission at the frog sartorius neuromuscular junction have been examined. QNB decreases endplate potential (EPP) amplitude without affecting miniature endplate (MEPP) frequency or resting potential. QNB also increased the latency of the EPP and the nerve terminal spike in a frequency dependent fashion, suggesting the site of action is the unmyelinated nerve terminal. Since the rate of rise and amplitude of muscle action are potentials decreased it is likely that QNB causes a blockade of electrically excitable sodium channels; the agent also blocks ionic channels associated with nicotinic acetylcholine receptors. It is possible that these effects of QNB may explain some of the behavioral disturbances produced by its administration.  相似文献   

8.
The interaction of diisopropylfluorophosphate (DFP) with the nicotinic acetylcholine (ACh) receptor of Torpedo electric organ was studied, using [3H]-phencyclidine ([3H]-PCP) as a reporter probe. Phencyclidine binds with different kinetics to resting, activated, and desensitized receptor conformations. Although DFP did not inhibit binding of [3H]-ACh or 125I-α-bungarotoxin (BGT) to the receptor recognition sites and potentiated in a time-dependent manner [3H]-PCP binding to the receptor's high-affinity allosteric site, it inhibited the ACh or carbamylcholine-stimulated [3H]-PCP binding. This suggested that DFP bound to a third kind of site on the receptor and affected receptor conformation. Preincubation of the membranes with DFP increased the receptor's affinity for carbamylcholine by eightfold and raised the pseudo-first-order rate of [3H]-PCP binding to that of an agonist-desensitized receptor. Accordingly, it is suggested that DFP induces receptor desensitization by binding to a site that is distinct from the recognition or high-affinity noncompetitive sites.  相似文献   

9.
10.
The action of acetylcholine on cytoplasmic Ca2+ concentration ([Ca2+]i) was studied in early embryonic chick retinae. Whole neural retinae were isolated from embryonic day 3 (E3) chicks and loaded with a Ca2+-sensitive fluorescent dye (Fura-2). Increases in [Ca2+]i were evoked by the puff application of acetylcholine at concentration than 0.1 μM. The Ca2+ response became larger in dose–dependant manner up to 10 μM of acetylcholine applied. The rise in [Ca2+]i was not due to the influx of Ca+2 through calcium channels, but to the release of Ca2+ from internal stores. A calcium channel antagonist, nifedipine, which completely blocks the Ca2+ rise caused by depolarization with 100 mM K+, had no effects on the acetylcholine response and the Ca2+ response to acetylcholine occurred even in a Ca2+-free medium. The Ca2+ response to acetylcholine was mediated by muscarinic receptors. Atropine of 1 μM abolished the response to 10 μM acetylcholine, whereas d-tubocurarine of 100 μM had no effects. Two muscarinic agonists, muscarine and carbamylcholine (100 μM each), evoked comparable responses with that to 10 μM acetylcholine. The developmental change of the muscarinic response was examined from E3 to E13. The Ca2+ response to 100 μM carbamylcholine was intense at E3-E5, then rapidly declined until E8. The muscarinic Ca2+ mobilization we found in the early embryonic chick retina may be regarded as a part of the “embryonic muscarinic system” proposed by Drew's group, which appears transiently and ubiquitously at early embryonic stages in relation to organogenesis. 1994 John Wiley & Sons, Inc.  相似文献   

11.
E M Kosower 《FEBS letters》1983,157(1):144-146
A molecular model for the bilayer helices of the acetylcholine receptor is constructed from the 7 channel elements and the 17 hydrophobic helices of the 5 protein subunits. The acetylcholine binding site and the opening to the ion channel are included.  相似文献   

12.
Receptor,theprimarysiteofcellperceivingexternalsignals,controlsthecommunicationbetweencellsandenvironment[1].Acetylcholineisanimportantneurotransmitterinvolvedinthetransmissionofsignalsatjunctionsbetweennervesandbetweennerveandmuscle.Theactionofacetylch…  相似文献   

13.
1. Nicotinic acetylcholine receptors (nAChR)4 from BC3H1 cells (which express a skeletal muscle-type receptor) and from Torpedo californica electric organ were expressed in Xenopus laevis oocytes and studied with a voltage-clamp technique. 2. We found that bath application of ATP in the micromolar to millimolar range increased the ACh-elicited current in both muscle and electrocyte receptors. The effect of ATP increased with successive applications. This "use-dependent" increase in potentiation was Ca2+ dependent, while the potentiation itself was not. 3. Four other nucleotides were tested on muscle nAChR: ADP, AMP, adenosine, and GTP. Of these, only ADP was a potentiator, but its effect was not use dependent. Neither ATP nor ADP affected the resting potential of the oocyte membrane. 4. ADP potentiated the response to suberyldicholine and nicotine, as well as ACh. 5. Finally, ADP reversed the phencyclidine-induced block of ACh currents in oocytes expressing muscle nAChR.  相似文献   

14.
Molecular heterogeneity of ferredoxin-NADP+ reductase from spinach leaves   总被引:3,自引:0,他引:3  
Highly purified ferredoxin-NADP+ reductase from spinach leaves showed at least eight different protein bands in the electrofocused gel. All of them were catalytically active and were adsorbed on a ferredoxin-Sepharose 4B affinity column. The N-terminal amino acid sequence of the main component species was analyzed by the automatic Edman degradation method. It was found that when the reductase was stored at 4 degrees C, new protein bands appeared in isoelectric focusing and sodium dodecyl sulfate polyacrylamide gel electrophoreses, but the appearance of the bands was suppressed by the addition of a protease inhibitor, diisopropyl fluorophosphate. This indicates that the molecular heterogeneity of the reductase may result from the digestion with a protease present in spinach leaves.  相似文献   

15.
The binding properties of myocardial muscarinic acetylcholine receptors are altered in the presence of choline or Tris. The binding of the antagonist [3H]quinuclidinyl benzilate is reduced in the presence of choline or Tris buffer, when compared to parallel determinations in a physiologic salt solution or phosphate buffer. Scatchard analysis indicates the reduced binding is due to a decrease in the apparent number of receptor sites. Experiments with other organic buffers exclude the possibility that the reduced binding in Tris is due to the absence of sodium ions. In the presence of choline or Tris up to 45% of the receptors are not accessible to [3H]quinuclidinyl benzilate. The remaining sites maintain their high affinity for the antagonist. A heterogeneity of antagonist sites is evident.  相似文献   

16.
The binding of [3H]quinuclidinyl benzilate to a cockroach brain preparation was investigated. Specific binding was saturable with a Kd of 0.25 nM and Scatchard analysis indicated a Bmax of 604 pmol/mg protein. Kinetic analysis indicated that the ligand is binding in a complex fashion while dissociation followed a simple kinetic process. The pharmacology of the site was typical of muscarinic receptors but the site cannot be characterized in terms of vertebrate muscarinic-receptor subtypes. Affinity of the receptor for agonists was modulated by Mg2+ and guanylylimidodiphosphate but not by pertussis toxin indicating the involvement of a pertussis-toxin insensitive G-protein. Carbamylcholine did not inhibit basal or forskolin-stimulated adenylate cyclase activity. The binding site was localized autoradiographically and was restricted to the median and lateral calyces of the brain.  相似文献   

17.
18.
To better understand metabotropic/ionotropic integration in neurons we have examined the regulation of M1 muscarinic acetylcholine (mACh) receptor signalling in mature (> 14 days in vitro), synaptically-active hippocampal neurons in culture. Using a protocol where neurons are exposed to an EC(50) concentration of the muscarinic agonist methacholine (MCh) prior to (R1), and following (R2) a desensitizing pulse of a high concentration of this agonist, we have found that the reduction in M(1) mACh receptor responsiveness is decreased in quiescent (+tetrodotoxin) neurons and increased when synaptic activity is enhanced by blocking GABA(A) receptors with picrotoxin. The picrotoxin-mediated effect on M1 mACh receptor responsiveness was completely prevented by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor blockade. Inhibition of endogenous G protein-coupled receptor kinase 2 by transfection with the non-G(q/11)alpha-binding, catalytically-inactive (D110A,K220R)G protein-coupled receptor kinase 2 mutant, decreased the extent of M1 mACh receptor desensitization under all conditions. Pharmacological inhibition of protein kinase C (PKC) activity, or chronic phorbol ester-induced PKC down-regulation had no effect on agonist-mediated receptor desensitization in quiescent or spontaneously synaptically active neurons, but significantly decreased the extent of receptor desensitization in picrotoxin-treated neurons. MCh stimulated the translocation of diacylglycerol- sensitive eGFP-PKCepsilon, but not Ca2+/diacylglycerol-sensitive eGFP-PKCbetaII in both the absence, and presence of tetrodotoxin. Under these conditions, MCh-stimulated eGFP-myristoylated, alanine-rich C kinase substrate translocation was dependent on PKC activity, but not Ca2+/calmodulin. In contrast, picrotoxin-driven translocation of myristoylated, alanine-rich C kinase substrate was accompanied by translocation of PKCbetaII, but not PKCepsilon, and was dependent on PKC and Ca2+/calmodulin. Taken together these data suggest that the level of synaptic activity may determine the different kinases recruited to regulate M1 mACh receptor desensitization in neurons.  相似文献   

19.
Purified acetylcholine receptor reconstituted into liposomes catalyzes carbamylcholine-dependent ion flux [10]. An endogenous protease activated by Ca2+ gives rise to an acrylamide gel pattern of the receptor with the 40,000-dalton subunit apparently as the major component. Exogenous proteases nick the proteins so extensively that the acrylamide gel pattern reveals polypeptides of 20,000 daltons or less. In either case the receptor sediments at 9S, indicating that the polypeptide chains associated. Moreover, the nicked receptors bind α-bungarotoxin and catalyze carbamylcholine-dependent ion flux after reconstitution.  相似文献   

20.
During synaptogenesis at the neuromuscular junction, nicotinic acetylcholine receptors (AChRs) are organized into high‐density postsynaptic clusters that are critical for efficient synaptic transmission. Rapsyn, an AChR associated cytoplasmic protein, is essential for the aggregation and immobilization of AChRs at the neuromuscular junction. Previous studies have shown that when expressed in nonmuscle cells, both assembled and unassembled AChR subunits are clustered by rapsyn, and the clustering of the α subunit is dependent on its major cytoplasmic loop. In the present study, we investigated the mechanism of rapsyn‐induced clustering of the AChR β, γ, and δ subunits by testing mutant subunits for the ability to cocluster with rapsyn in transfected QT6 cells. For each subunit, deletion of the major cytoplasmic loop, between the third and fourth transmembrane domains, dramatically reduced coclustering with rapsyn. Furthermore, each major cytoplasmic loop was sufficient to mediate clustering of an unrelated transmembrane protein. The AChR subunit mutants lacking the major cytoplasmic loops could assemble into αδ dimers, but these were poorly clustered by rapsyn unless at least one mutant was replaced with its wild‐type counterpart. These results demonstrate that the major cytoplasmic loop of each AChR subunit is both necessary and sufficient for mediating efficient clustering by rapsyn, and that only one such domain is required for rapsyn‐mediated clustering of an assembly intermediate, the αδ dimer. © 2003 Wiley Periodicals, Inc. J Neurobiol 54: 486–501, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号