首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microbial attachment and biofilm formation is a ubiquitous behaviour of microorganisms and is the most crucial prerequisite of contact bioleaching. Monazite and xenotime are two commercially exploitable minerals containing rare earth elements (REEs). Bioleaching using phosphate solubilizing microorganisms is a green biotechnological approach for the extraction of REEs. In this study, microbial attachment and biofilm formation of Klebsiella aerogenes ATCC 13048 on the surface of these minerals were investigated using confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). In a batch culture system, K. aerogenes was able to attach and form biofilms on the surface of three phosphate minerals. The microscopy records showed three distinctive stages of biofilm development for K. aerogenes commencing with initial attachment to the surface occurring in the first minutes of microbial inoculation. This was followed by colonization of the surface and formation of a mature biofilm as the second distinguishable stage, with progression to dispersion as the final stage. The biofilm had a thin-layer structure. The colonization and biofilm formation were localized toward physical surface imperfections such as cracks, pits, grooves and dents. In comparison to monazite and xenotime crystals, a higher proportion of the surface of the high-grade monazite ore was covered by biofilm which could be due to its higher surface roughness. No selective attachment or colonization toward specific mineralogy or chemical composition of the minerals was detected. Finally, in contrast to abiotic leaching of control samples, microbial activity resulted in extensive microbial erosion on the high-grade monazite ore.  相似文献   

2.
Yi Wang  Sui M. Lee 《Biofouling》2013,29(3):307-318
Tea can inhibit the attachment of Streptococcus mutans to surfaces and subsequent biofilm formation. Five commercial tea extracts were screened for their ability to inhibit attachment and biofilm formation by two strains of S. mutans on glass and hydroxyapatite surfaces. The mechanisms of these effects were investigated using scanning electron microscopy (SEM) and phytochemical screening. The results indicated that extracts of oolong tea most effectively inhibited attachment and extracts of pu-erh tea most effectively inhibited biofilm formation. SEM images showed that the S. mutans cells treated with extracts of oolong tea, or grown in medium containing extracts of pu-erh tea, were coated with tea components and were larger with more rounded shapes. The coatings on the cells consisted of flavonoids, tannins and indolic compounds. The ratio of tannins to simple phenolics in each of the coating samples was ~3:1. This study suggests potential mechanisms by which tea components may inhibit the attachment and subsequent biofilm formation of S. mutans on tooth surfaces, such as modification of cell surface properties and blocking of the activity of proteins and the structures used by the bacteria to interact with surfaces.  相似文献   

3.
Biofilms of selected bacteria strains were previously used on metal coupons as a protective layer against microbiologically influenced corrosion of metals. Unlike metal surfaces, concrete surfaces present a hostile environment for growing a protective biofilm. The main objective of this research was to investigate whether a beneficial biofilm can be successfully grown on mortar surfaces. Escherichia coli DH5α biofilm was grown on mortar surfaces for 8 days, and the structure and characteristics of the biofilm were studied using advanced microscopy techniques such as scanning electron microscopy and confocal laser scanning microscopy in combination with fluorescence in situ hybridization, live/dead, extracellular polymer staining, ATP analysis, and membrane filtration. A biofilm layer with a varying thickness of 20–40 μm was observed on the mortar surface. The distribution of live and dead bacteria and extracellular polymers varied with depth. The density of the live population near the mortar surface was the lowest. The bacteria reached their highest density at three fourths of the biofilm depth and then decreased again near the biofilm–liquid interface. Overall, the results indicated a healthy biofilm growth in the chosen growth period of 8 days, and it is expected that longer growth periods would lead to formation of a more resistant biofilm with more coverage of mortar surfaces.  相似文献   

4.
This article describes the optimization of an experimental technique referred to as electric cell-substrate impedance sensing (ECIS) to monitor attachment and spreading of mammalian cells quantitatively and in real time. The method is based on measuring changes in AC impedance of small gold-film electrodes deposited on a culture dish and used as growth substrate. Based on experimental data and theoretical considerations we demonstrate that high-frequency capacitance measurements (f = 40 kHz) are most suited to follow the increasing surface coverage of the electrode due to cell spreading. The excellent time resolution of the method allowed an in-depth analysis of cell spreading kinetics under various experimental conditions. Using ECIS we studied the attachment and spreading of epithelial MDCK cells (strain II) on different protein coatings, and investigated the influence of divalent cations on spreading kinetics. We quantified the inhibitory effect of soluble peptides that mimic the recognition sequence of fibronectin and other extracellular matrix proteins (RGDS). We also applied the ECIS technique to monitor the detachment of confluent fibroblastic cell layers (WI38/VA-13) by means of these peptides.  相似文献   

5.
Imaging of biofilms on opaque surfaces is a challenge presented to researchers especially considering pathogenic bacteria, as those typically grow on living tissue, such as mucosa and bone. However, they can also grow on surfaces used in industrial applications such as food production, acting as a hindrance to the process. Thus, it is important to understand bacteria better in the environment they actually have relevance in. Stainless steel and titanium substrata were line structured and dotted surface topographies for titanium substrata were prepared to analyze their effects on biofilm formation of a constitutively green fluorescent protein (GFP)‐expressing Escherichia coli strain. The strain was batch cultivated in a custom built flow cell initially for 18 h, followed by continuous cultivation for 6 h. Confocal laser scanning microscopy (CLSM) was used to determine the biofilm topography. Biofilm growth of E. coli GFPmut2 was not affected by the type of metal substrate used; rather, attachment and growth were influenced by variable shapes of the microstructured titanium surfaces. In this work, biofilm cultivation in flow cells was coupled with the most widely used biofilm analytical technique (CLSM) to study the time course of growth of a GFP‐expressing biofilm on metallic surfaces without intermittent sampling or disturbing the natural development of the biofilm.  相似文献   

6.
The aim of the work is to investigate the effect of marine bacterial culture supernatants on biofilm formation of Vibrio spp., a major menace in aquaculture industries. Vibrio spp. biofilm cause life-threatening infections in humans and animals. Forty-three marine bacterial culture supernatants were screened against the hydrophobicity index, initial attachment and biofilm formation in Vibrio spp. Twelve culture supernatants showed antibiofilm activity. The bacterial culture supernatants S8-07 (Bacillus pumilus) and S6-01 (B. indicus) inhibited the initial attachment, biofilm formation and dispersed the mature biofilm at 5% v/v concentration without inhibiting the growth. Analysis by light microscopy and confocal laser scanning microscopy showed that the architecture of the biofilm was destroyed by bacterial supernatants when compared to the control. The bacterial supernatants also reduce the surface hydrophobicity of Vibrio spp. which is one of the important requirements for biofilm formation. Further characterization of antibiofilm activity in S8-07 culture supernatant confirmed that it is an enzymatic activity and the size is more than 10 kDa and in S6-01, it is a heat-stable, non-protein compound. Furthermore, both the supernatants failed to show any biosurfactant activity. The culture supernatants of S8-07 and S6-01 with promising antibiofilm property have potential for application in medicine and marine aquaculture.  相似文献   

7.
Histophilus somni (Haemophilus somnus) is an obligate inhabitant of the mucosal surfaces of bovines and sheep and an opportunistic pathogen responsible for respiratory disease, meningoencephalitis, myocarditis, arthritis, and other systemic infections. The identification of an exopolysaccharide produced by H. somni prompted us to evaluate whether the bacterium was capable of forming a biofilm. After growth in polyvinyl chloride wells a biofilm was formed by all strains examined, although most isolates from systemic sites produced more biofilm than commensal isolates from the prepuce. Biofilms of pneumonia isolate strain 2336 and commensal isolate strain 129Pt were grown in flow cells, followed by analysis by confocal laser scanning microscopy and scanning electron microscopy. Both strains formed biofilms that went through stages of attachment, growth, maturation, and detachment. However, strain 2336 produced a mature biofilm that consisted of thick, homogenous mound-shaped microcolonies encased in an amorphous extracellular matrix with profound water channels. In contrast, strain 129Pt formed a biofilm of cell clusters that were tower-shaped or distinct filamentous structures intertwined with each other by strands of extracellular matrix. The biofilm of strain 2336 had a mass and thickness that was 5- to 10-fold greater than that of strain 129Pt and covered 75 to 82% of the surface area, whereas the biofilm of strain 129Pt covered 35 to 40% of the surface area. Since H. somni is an obligate inhabitant of the bovine and ovine host, the formation of a biofilm may be crucial to its persistence in vivo, and our in vitro evidence suggests that formation of a more robust biofilm may provide a selective advantage for strains that cause systemic disease.  相似文献   

8.
Biofilm formation by Gfp-tagged Pseudomonas aeruginosa PAO1 wild type, flagella and type IV pili mutants in flow chambers irrigated with citrate minimal medium was characterized by the use of confocal laser scanning microscopy and comstat image analysis. Flagella and type IV pili were not necessary for P. aeruginosa initial attachment or biofilm formation, but the cell appendages had roles in biofilm development, as wild type, flagella and type IV pili mutants formed biofilms with different structures. Dynamics and selection during biofilm formation were investigated by tagging the wild type and flagella/type IV mutants with Yfp and Cfp and performing time-lapse confocal laser scanning microscopy in mixed colour biofilms. The initial microcolony formation occurred by clonal growth, after which wild-type P. aeruginosa bacteria spread over the substratum by means of twitching motility. The wild-type biofilms were dynamic compositions with extensive motility, competition and selection occurring during development. Bacterial migration prevented the formation of larger microcolonial structures in the wild-type biofilms. The results are discussed in relation to the current model for P. aeruginosa biofilm development.  相似文献   

9.
Biofouling is a serious problem on filter membranes of water purification systems due to formation of bacterial biofilms, which can be detrimental to the membrane performance. Biofouling occurs on membrane surface and therefore greatly influences the physical and chemical aspects of the surface. Several membranes including microfiltration, ultrafiltration, and reverse osmosis (RO) membranes were used to learn about the anti-biofouling properties of vanillin affecting the membrane performances. Vanillin has been recognized as a potential quorum quenching compound for Aeromonas hydrophila biofilms. The initial attachment and dynamics of biofilm growth were monitored using scanning electron microscopy and confocal laser scanning microscopy. Biofilm quantities were measured using a plate count method and total protein determinations. Vanillin addition was effective in the prevention of biofilm formation on the tested membrane surfaces. Among the membranes, RO membranes made with cellulose acetate showed the most substantial reduction of biofilm formation by addition of vanillin. The biofilm reduction was confirmed by the results of surface coverage, biomass and protein accumulation. The HPLC spectrum of the spent culture with vanillin addition showed that vanillin may interfere with quorum sensing molecules and thus prevent the formation of the biofilms.  相似文献   

10.
Antifouling (AF) paints are used to prevent the attachment of living organisms to the submerged surfaces of ships, boats and aquatic structures, usually by the release of biocides. Apart from copper, organic booster biocides are the main active components in AF paints, but their use can have a negative impact on the marine environment. The direct effects of biocides on marine bacteria are poorly known. This work investigates the impact of two biocides, viz. diuron and tolylfluanid, on the growth and the viability of marine microorganisms and on their ability to form biofilms. The biocides in solution were found to inhibit growth of two strains of marine bacteria, viz. Pseudoalteromonas and Vibrio vulnificus, at a high concentration (1000 μg ml?1), but only a small effect on viability was observed. Confocal laser scanning microscopy (CLSM) showed that the booster biocides decreased biofilm formation by both bacteria. At a concentration of 10 μg ml?1, the biocides inhibited cell attachment and reduced biofilm thickness on glass surfaces. The percentage of live cells in the biofilms was also reduced. The effect of the biocides on two diatoms, Fragilaria pinnata and Cylindrotheca closterium, was also evaluated in terms of growth rate, biomass, chlorophyll a content and attachment to glass. The results demonstrate that diuron and tolylfluanid are more active against diatoms than bacteria.  相似文献   

11.
Apoptosis is a strictly regulated and genetically encoded cell 'suicide' that may be triggered by cytokines, depletion of growth factors or certain chemicals. It is morphologically characterized by severe alterations in cell shape like cell shrinkage and disintegration of cell-cell contacts. We applied a non-invasive electrochemical technique referred to as electric cell-substrate impedance sensing (ECIS) in order to monitor the apoptosis-induced changes in cell shape in an integral and quantitative fashion with a time resolution in the order of minutes. In ECIS the cells are grown directly on the surface of small gold-film electrodes (d = 2 mm). From readings of the electrical impedance of the cell-covered electrode, performed with non-invasive, low amplitude sensing voltages, it is possible to deduce alterations in cell-cell and cell-substrate contacts. To improve the sensitivity of this impedance assay we used endothelial cells derived from cerebral micro-vessels as cellular model systems since these are well known to express electrically tight intercellular junctions. Apoptosis was induced by cycloheximide (CHX) and verified by biochemical and cytological assays. The time course of cell shape changes was followed with unprecedented time resolution by impedance readings at 1 kHz and correlated with biochemical parameters. From impedance readings along a broad frequency range of 1-10(6) Hz we could assign the observed impedance changes to alterations on the subcellular level. We observed that disassembly of barrier-forming tight junctions precedes changes in cell-substrate contacts and correlates strongly with the time course of protease activation.  相似文献   

12.
This paper reports the effect of soda-lime-glass-nAg coating on the viability of an in vitro biofilm of Streptococcus oralis. Three strains (ATCC 35037 and two clinical isolates from periodontitis patients) were grown on coated with glass, glass containing silver nanoparticles, and uncoated titanium alloy disks. Two different methods were used to quantify biofilm formation abilities: crystal violet staining and determination of viable counts. The influence of the surface morphology on the cell attachment was studied. The surface morphology was characterized by scanning electron microscopy (SEM) and using a profilometer. SEM was also used to study the formation and the development of biofilm on the coated and uncoated disks. At least a >99.7% inocula reduction of biofilm respect to titanium disks and also to glass coated disks was observed in the glass-nAg coated disks for all the studied strains. A quantitative evaluation of the release of silver was conducted in vitro to test whether and to what extend the biocidal agent (silver) could leach from the coating. These findings suggest that the biofilm formation of S. oralis strains is highly inhibited by the glass-nAg and may be useful for materials which require durable antibacterial effect on their surfaces, as it is the case of dental implants.  相似文献   

13.
Bacterial biofilms which are responsible for a number of diseases are very difficult to control effectively because of their high resistance to antibiotics and the host defence system. The use of natural products decreasing or preventing initial adhesion of bacteria and biofilm formation is one of the alternative therapeutic strategies taken into consideration. We ask the question, whether a crude extract from the cell wall of Saccharomyces cerevisiae (mannoprotein), which possesses surfactant activity, may be used as inhibitor of Staphylococcus aureus and S. epidermidis biofilm development. By using the "bactericidal spot assay" it was demonstrated that mannoprotein had no direct antibiotic activity against the tested strains. The influence of this extract on initial adhesion, biofilm formation and dispersal of preformed biofilms was studied using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. In this assay, live bacteria with an active electron transport system reduce the tetrazolium salt to a water-soluble purple formazan product, and optical density reading (A550) values are directly dependent on their cell numbers. Yeast-derived surfactant, when adsorbed in the microplate wells or present in the medium, was effective both in decreasing the initial deposition of staphylococci and in reducing the amount of growing biofilm, quantitated after 24 h of co-incubation with the bacteria. It also changed the parameters of biofilm morphology analyzed by PHLIP - the confocal laser scanning microscopy image quantification package. Mannoprotein also accelerated the detachment of mature staphylococcal biofilms, preformed in optimal conditions. It was concluded that mannoprotein anti-biofilm action reflects its influence on cell surface hydrophobicity.  相似文献   

14.
Biofilms are communities of cells held together by a self-produced extracellular matrix typically consisting of protein, exopolysaccharide, and often DNA. A natural signal for biofilm disassembly in Bacillus subtilis is certain D-amino acids, which are incorporated into the peptidoglycan and trigger the release of the protein component of the matrix. D-amino acids also prevent biofilm formation by the related Gram-positive bacterium Staphylococcus aureus. Here we employed fluorescence microscopy and confocal laser scanning microscopy to investigate how D-amino acids prevent biofilm formation by S. aureus. We report that biofilm formation takes place in two stages, initial attachment to surfaces, resulting in small foci, and the subsequent growth of the foci into large aggregates. D-amino acids did not prevent the initial surface attachment of cells but blocked the subsequent growth of the foci into larger assemblies of cells. Using protein- and polysaccharide-specific stains, we have shown that D-amino acids inhibited the accumulation of the protein component of the matrix but had little effect on exopolysaccharide production and localization within the biofilm. We conclude that D-amino acids act in an analogous manner to prevent biofilm development in B. subtilis and S. aureus. Finally, to investigate the potential utility of D-amino acids in preventing device-related infections, we have shown that surfaces impregnated with D-amino acids were effective in preventing biofilm growth.  相似文献   

15.
Influence of magnesium ions on biofilm formation by Pseudomonas fluorescens   总被引:1,自引:0,他引:1  
Mg2+ can potentially influence bacterial adhesion directly through effects on electrostatic interactions and indirectly by affecting physiology-dependent attachment processes. However, the effects of Mg2+ on biofilm structure are largely unknown. In this study, Pseudomonas fluorescens was used to investigate the influence of Mg2+ concentration (0, 0.1 and 1.0 mM MgCl2) on biofilm growth. Planktonic and attached cells were enumerated (based on DAPI staining) while biofilm structures were examined via confocal laser scanning microscopy and three-dimensional structures were reconstructed. Mg2+ concentration had no influence on growth of planktonic cells but, during biofilm formation, Mg2+ increased the abundance of attached cells. For attached cells, the influence of Mg2+ concentration changed over time, suggesting that the role of Mg2+ in bacterial attachment is complex and dynamic. Biofilm structures were heterogeneous and surface colonization and depth increased with increasing Mg2+ concentrations. Overall, for P. fluorescens, Mg2+ increased initial attachment and altered subsequent biofilm formation and structure.  相似文献   

16.
The ability of surfactants obtained from three Lactobacillus acidophilus strains to inhibit Staphylococcus aureus and S. epidermidis biofilms was evaluated. Their influence was determined on bacterial initial adhesion, biofilm formation and dispersal using MTT-reduction assay, confocal laser scanning microscopy and image PHLIP analysis. The number of adhering S. aureus and S. epidermidis cells after a 3-h co-incubation with biosurfactants was reduced by 5-56 % in a strain-and dose-dependent manner. S. epidermidis-and, to a lower extent, in S. aureus-biofilm formation was also inhibited in the presence of the tested surfactants. The addition of surfactants to preformed mature biofilms accelerated their dispersal, and changed the parameters of biofilm morphology. The L. acidophilus-derived surfactants inhibit bacterial deposition rate and biofilm development (and also its maturation) without affecting cell growth probably due to the influence on the cell-surface hydrophobicity of staphylococci.  相似文献   

17.
De Blasio BF  Laane M  Walmann T  Giaever I 《BioTechniques》2004,36(4):650-4, 656, 658 passim
A new method combining optical and electrical impedance measurements is described that enables submicroscopic cell movements to be monitored. The cells are grown on small gold electrodes that are transparent to light. This modified electrical cell-substrate impedance sensor (ECIS) allows simultaneous microscopic recording of both growth and motility, thus enabling cell confluence on the electrodes to be systematically correlated to the impedance in regular time intervals of seconds and for extended periods of time. Furthermore, the technique provides an independent measure of monolayer cell densities that we compare to calculated values from a theoretical model. We have followed the attachment and spreading behavior of epithelial Madin-Darby canine kidney strain I (MDCK-I) cell cultures on microelectrodes for up to 40 h. The studies reveal a high degree of correlation between the measured resistance at 4 kHz and the corresponding cell confluence in 4- to 6-h intervals with typical linear cross-correlation factors of r equaling approximately 0.9. In summary, the impedance measured with the ECIS technique provides a good quantitative measure of cell confluence.  相似文献   

18.
The paper presents an endoscope technique to provide a non-destructive detection and imaging of biofilms on porous sand grains without disturbing the system. This in situ observation of biofilm growth was carried out by inserting an endoscope into the reactor after introducing the substrate into a water-saturated quartz sand-packed reactor. As the microbes grew on the media surface with time, an expansion was presented in biofilm area. In this way, the growth of biofilm on porous sand grains could be continuously captured. The expanding of the biofilm image was observed, and the biofilm on the sand grains was measured by image analysis of biofilm cross-sections. In order to further identify the biofilm growth, at the end of experiment the packed reactor was dismantled and biofilms along with the aquifer material were sampled for the biofilm growth observation by the scanning electron microscopy (SEM). The biofilm thickness was also measured by image analysis of biofilm cross-sections. The results demonstrated significant spatial variations in mean biofilm thickness (106.2 ± 12.54 m to 243.5 ± 26.53 m) and thickness variability (0.07–0.12) using image analysis of SEM. However, the mean biofilm thickness measurements done by image analysis of SEM were about 60–82% smaller compared with those by image analysis of endoscopy. This is because of the dehydration and alteration of the biofilm material after dismantling the reactor for SEM observations. In comparison, we found that the endoscope image could provide a first-hand observation of biofilm growth without disrupting the system, while the SEM image could give a better resolution.  相似文献   

19.
The utilization of high strength carbon steels in oil and gas transportation systems has recently increased. This work investigates microbiologically influenced corrosion (MIC) of API 5L X80 linepipe steel by sulfate reducing bacteria (SRB). The biofilm and pit morphology that developed with time were characterized with field emission scanning electron microscopy (FESEM). In addition, electrochemical impedance spectroscopy (EIS), polarization resistance (Rp) and open circuit potential (OCP) were used to analyze the corrosion behavior. Through circuit modeling, EIS results were used to interpret the physicoelectric interactions between the electrode, biofilm and solution interfaces. The results confirmed that the extensive localized corrosion activity of SRB is due to a formed biofilm and a porous iron sulfide layer on the metal surface. Energy Dispersive Spectroscopy (EDS) revealed the presence of different sulfide and oxide constituents in the corrosion products for the system exposed to SRB.  相似文献   

20.
Bacterial biofilms impair the operation of many industrial processes. Deinococcus geothermalis is efficient primary biofilm former in paper machine water, functioning as an adhesion platform for secondary biofilm bacteria. It produces thick biofilms on various abiotic surfaces, but the mechanism of attachment is not known. High-resolution field-emission scanning electron microscopy and atomic force microscopy (AFM) showed peritrichous adhesion threads mediating the attachment of D. geothermalis E50051 to stainless steel and glass surfaces and cell-to-cell attachment, irrespective of the growth medium. Extensive slime matrix was absent from the D. geothermalis E50051 biofilms. AFM of the attached cells revealed regions on the cell surface with different topography, viscoelasticity, and adhesiveness, possibly representing different surface layers that were patchily exposed. We used oscillating probe techniques to keep the tip-biofilm interactions as small as possible. In spite of this, AFM imaging of living D. geothermalis E50051 biofilms in water resulted in repositioning but not in detachment of the surface-attached cells. The irreversibly attached cells did not detach when pushed with a glass capillary but escaped the mechanical force by sliding along the surface. Air drying eliminated the flexibility of attachment, but it resumed after reimmersion in water. Biofilms were evaluated for their strength of attachment. D. geothermalis E50051 persisted 1 h of washing with 0.2% NaOH or 0.5% sodium dodecyl sulfate, in contrast to biofilms of Burkholderia cepacia F28L1 or the well-characterized biofilm former Staphylococcus epidermidis O-47. Deinococcus radiodurans strain DSM 20539(T) also formed tenacious biofilms. This paper shows that D. geothermalis has firm but laterally slippery attachment not reported before for a nonmotile species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号