首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
The conjugative plasmid pRSD2 carries a raf operon that encodes a peripheral raffinose metabolic pathway in enterobacteria. In addition to the previously known raf genes, we identified another gene, rafY, which in Escherichia coli codes for an outer membrane protein (molecular mass, 53 kDa) similar in function to the known glycoporins LamB (maltoporin) and ScrY (sucrose porin). Sequence comparisons with LamB and ScrY revealed no significant similarities; however, both lamB and scrY mutants are functionally complemented by RafY. Expressed from the tac promoter, RafY significantly increases the uptake rates for maltose, sucrose, and raffinose at low substrate concentrations; in particular it shifts the apparent K(m) for raffinose transport from 2 mM to 130 microM. Moreover, RafY permits diffusion of the tetrasaccharide stachyose and of maltodextrins up to maltoheptaose through the outer membrane of E. coli. A comparison of all three glycoporins in regard to their substrate selectivity revealed that both ScrY and RafY have a broad substrate range which includes alpha-galactosides while LamB seems to be restricted to malto-oligosaccharides. It supports growth only on maltodextrins but not, like the others, on raffinose and stachyose.  相似文献   

8.
Growth of the Escherichia coli cell envelope   总被引:1,自引:0,他引:1  
A Jaffé  R D'ari 《Biochimie》1985,67(1):141-144
The growth pattern of the Escherichia coli envelope was studied by immunoelectron microscopy, using the outer membrane protein LamB specifically labelled by a double antibody gold particle technique. An operon fusion placing the lamB gene under lac promoter control permitted rapid turn-off of LamB synthesis. In the generation following turn-off no lamB-free regions appeared, strongly suggesting that bulk outer membrane material is not inserted in restricted growth zones.  相似文献   

9.
Northern blotting analysis with RNA probes derived from amidase and nitrile hydratase genes from Rhodococcus sp. ACV2 revealed that both genes are part of the same operon. RNase protection mapping and sequence analysis indicated that the operon is probably under the control of a sigma 70-like promoter located upstream from the amidase gene. Plasmids were constructed with the cloned genes under tac and lac promoter control. Expression of amdA was demonstrated in Escherichia coli. In another construction, the amdA gene was inserted under the control of the bacteriophage T7 promoter. Large amounts of recombinant amidase (at least 20% of total proteins) in a soluble and active form were obtained with the E. coli-T7 expression system by lowering the growth temperature to 29 degrees C, without IPTG induction. The ratio of amidase activity of strain ACV2 to E. coli was approximately 1:3. Purification of the recombinant amidase was carried out in one chromatographic step, giving an enzyme preparation that could be used directly in a biotechnological process.  相似文献   

10.
11.
The regulation of synthesis and export of outer membrane proteins of Escherichia coli was examined by overexpressing ompC in multicopy either from its own promoter or from an inducible promoter in an expression vector. Overexpression of OmpC protein resulted in a nearly complete inhibition of synthesis of the OmpA and LamB outer membrane proteins but had no effect on synthesis of the periplasmic maltose-binding protein. Immunoprecipitation of labeled proteins showed no evidence of accumulation of uncleaved precursor forms of OmpA or maltose-binding protein following induction of OmpC overexpression. The inhibition of OmpA and LamB was tightly coupled to OmpC overexpression and occurred very rapidly, reaching a high level within 2 min after induction. OmpC overexpression did not cause a significant decrease in expression of a LamB-LacZ hybrid protein produced from a lamB-lacZ fusion in which the fusion joint was at the second amino acid of the LamB signal sequence. There was no significant decrease in rate of synthesis of ompA mRNA as measured by filter hybridization of pulse-labeled RNA. These results indicate that the inhibition is at the level of translation. We propose that cells are able to monitor expression of exported proteins by sensing occupancy of some limiting component in the export machinery and use this to regulate translation of these proteins.  相似文献   

12.
13.
Three open reading frames (ORFs) have been found in the region downstream of the luxG gene in the Photobacterium leiognathi lux operon. These genes (ORF I, II, and III) are not only closely linked to the lux operon and transcribed in the same direction but also show the same organization and code for proteins homologous in sequence to the gene products of ribB, ribA, and ribH of Bacillus subtilis, respectively. The Photobacterium leiognathi gene (ORF II) corresponding to ribA was expressed in Escherichia coli in the bacteriophage T7 promoter-RNA polymerase system and a 40 kDa 35S-labeled polypeptide has been detected on SDS-PAGE. Expression of DNA extending from luxBEG to ORF II inserted between a strong promoter and a reporter gene and transferred by conjugation into Vibrio harveyi did not affect the expression of the reporter gene. The results provide evidence that neither promoter nor terminator sites were present in the DNA between the luxG and ORF II indicating that these genes might be part of the lux operon.  相似文献   

14.
In metabolic engineering, systems which allow coordinated control of two metabolic pathways can be useful. We designed two expression systems and demonstrated their application by coordinating glycogen synthesis and degradation. The first expression vector pMSW2 expressed the glycogen synthesis genes in one operon and the glycogen degradation gene in a separate, coordinately regulated operon. The plasmid was designed to switch off expression of the first operon and activate expression of the second operon on addition of IPTG. As an alternative means to control glycogen synthesis and degradation pathways, we constructed expression vector pGTSD100, which contains the native Escherichia coli glycogen synthesis and degradation operon under control of the tac promoter. Both expression vectors work successfully to control the net synthesis and degradation of glycogen. In cultures of the E. coli strain TA3476 carrying the plasmid pMSW2, before the addition of IPTG, glycogen continued to accumulate in the culture. About three hours after IPTG was added, glycogen levels began to decrease. When no IPTG was added to cultures of TA3476:pMSW2, glycogen accumulated in the cells as before but the rate of degradation of glycogen was much lower. When IPTG was added to TA3476:pMSW2, the total cell protein at the end of batch cultivation was approximately 15% higher compared to cultures without IPTG addition. The extra biomass was formed during the glycogen degradation phase. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 419-426, 1997.  相似文献   

15.
Past work has shown that transformed Escherichia coli is not a suitable vehicle for studying the expression and regulation of the cloned luminescence (lux) genes of Vibrio harveyi. Therefore, we have used a conjugative system to transfer lux genes cloned into E. coli back into V. harveyi, where they can be studied in the parental organism. To do this, lux DNA was inserted into a broad-spectrum vector, pKT230, cloned in E. coli, and then mobilized into V. harveyi by mating aided by the conjugative plasmid pRK2013, also contained in E. coli. Transfer of the wild-type luxD gene into the V. harveyi M17 mutant by this means resulted in complementation of the luxD mutation and full restoration of luminescence in the mutant; expression of transferase activity was induced if DNA upstream of luxC preceded the luxD gene on the plasmid, indicating the presence of a strong inducible promoter. To extend the usefulness of the transfer system, the gene for chloramphenicol acetyltransferase was inserted into the pKT230 vector as a reporter. The promoter upstream of luxC was verified to be cell density regulated and, in addition, glucose repressible. It is suggested that this promoter may be the primary autoregulated promoter of the V. harveyi luminescence system. Strong termination signals on both DNA strands were recognized and are located downstream from luxE at a point complementary to the longest mRNA from the lux operon. Structural lux genes transferred back into V. harveyi under control of the luxC promoter are expressed at very high levels in V. harveyi as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis: the gene transfer system is thus useful for expression of proteins as well as for studying the regulation of lux genes in their native environment.  相似文献   

16.
We previously proposed that the function of the lux operon is to produce a halotolerant flavodoxin, FP390 or P-flavin binding protein, and not to produce light. A crucial basis of this hypothesis is that almost all species of luminous bacteria emit light in culture media containing over 2% NaCl. However, Vibrio albensis (Vibrio cholerae biovar albensis) NCIMB 41 emits light in freshwater and this appears to be in direct conflict with our hypothesis. To determine why this exceptional freshwater bioluminescence is emitted, we studied the lux operon and the regulatory system of the operon in this strain, and found that expression of the operon is regulated by a system involving a derivative of 4,5-dihydroxy 2,3-pentanedione, DPD, as an inducer, and the repressor gene for the lux operon, luxO, is damaged by deletion of two nucleotides. Furthermore, to study the effect of damage to the luxO gene, pUC18 derivatives containing the damaged and repaired luxO sequences were prepared. Cells transfected with the damaged luxO sequence emitted light like the parental strain, whereas ones transfected with the repaired one did so only sparingly. Here we show that the light emission in freshwater by this strain is not in conflict with our hypothesis.  相似文献   

17.
18.
The expression of human leucocyte interferon alpha F gene in plasmid pLM-IFN alpha F-273 is controlled by a hybrid tac (trp-lac) promoter. A structural gene for interferon alpha F is a component of the hybrid operon lacZ'-IFN alpha F-TcR, that contains an E. coli trp-operon intercystronic region. Plasmid pLM IFN alpha F-273--directed interferon synthesis allows to obtain about 10(7) IU/l. This plasmid was cloned in broad-host-range vector plasmid pAYC31. The hybrid bi-repliconed plasmid containing interferon gene as well as its single-repliconed deletion derivatives obtained by the in vivo recombination, were introduced into obligate methylotroph Methylobacillus flagellatum KT and Pseudomonas putida PpG6. Methylotrophic strain and Pseudomonas were able to transcribe the interferon gene from E. coli tac promoter, the yield of interferon being 2-4-fold higher as compared with the one in the initial host.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号