首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Jones JO  Arvin AM 《Journal of virology》2006,80(11):5113-5124
Varicella-zoster virus (VZV) is an alphaherpesvirus that causes varicella and herpes zoster. Using human cellular DNA microarrays, we found that many nuclear factor kappa B (NF-kappaB)-responsive genes were down-regulated in VZV-infected fibroblasts, suggesting that VZV infection inhibited the NF-kappaB pathway. The activation of this pathway causes a cellular antiviral response, including the production of alpha/beta interferon, cytokines, and other proteins that restrict viral infection. In these experiments, we demonstrated that VZV interferes with NF-kappaB activation in cultured fibroblasts and in differentiated epidermal cells in skin xenografts of SCIDhu mice infected in vivo. VZV infection of fibroblasts caused a transient nuclear translocation of p50 and p65, the canonical NF-kappaB family members. In a process that was dependent upon the presence of infectious VZV, these proteins rapidly became sequestered in the cytoplasm of VZV-infected cells. Exclusion of NF-kappaB proteins from nuclei was associated with the continued presence of IkappaBalpha, which binds p50 and p65 and prevents their nuclear accumulation. IkappaBalpha levels did not diminish even though the protein became phosphorylated and ubiquitinated, as determined based on detection of the characteristic high-molecular-weight form of the protein, and the 26S proteasome remained functional in VZV-infected cells. VZV infection also inhibited the characteristic degradation of IkappaBalpha that is induced by exposure of fibroblasts to tumor necrosis factor alpha. As expected, herpes simplex virus 1 caused the persistent nuclear translocation of NF-kappaB proteins, which has been shown to facilitate its replication, whereas VZV infection progressed without persistent NF-kappaB nuclear localization. We suggest that VZV has evolved a mechanism to limit host cell antiviral defenses by sequestering NF-kappaB proteins in the cytoplasm, a strategy that appears to be unique among the herpesviruses.  相似文献   

2.
To continue our investigation of the cellular events that occur following human CMV (HCMV) infection, we focused on the regulation of cellular activation following viral binding to human monocytes. First, we showed that viral binding induced a number of immunoregulatory genes (IL-1beta, A20, NF-kappaB-p105/p50, and IkappaBalpha) in unactivated monocytes and that neutralizing Abs to the major HCMV glycoproteins, gB (UL55) and gH (UL75), inhibited the induction of these genes. Next, we demonstrated that these viral ligands directly up-regulated monocyte gene expression upon their binding to their appropriate cellular receptors. We then investigated if HCMV binding also resulted in the translation and secretion of cytokines. Our results showed that HCMV binding to monocytes resulted in the production and release of IL-1beta protein. Because these induced gene products have NF-kappaB sites in their promoter regions, we next examined whether there was an up-regulation of nuclear NF-kappaB levels. These experiments showed that, in fact, NF-kappaB was translocated to the nucleus following viral binding or purified viral ligand binding. Changes in IkappaBalpha levels correlated with the changes in NF-kappaB translocation. Lastly, we demonstrated that p38 kinase activity played a central role in IL-1beta production and that it was rapidly up-regulated following infection. These results support our hypothesis that HCMV initiates a signal transduction pathway that leads to monocyte activation and pinpoints a potential mechanism whereby HCMV infection of monocytes can result in profound pathogenesis, especially in chronic inflammatory-type conditions.  相似文献   

3.
Respiratory syncytial virus (RSV) infection of airway epithelial cells results in persistent NF-kappaB activation and NF-kappaB-mediated interleukin-8 production. Previous studies in airway epithelial cells demonstrated that tumor necrosis factor alpha (TNF-alpha)-induced NF-kappaB activation is transient due to regulation by IkappaBalpha. However, during RSV infection, IkappaBalpha has only a partial inhibitory effect on NF-kappaB activation. Studies presented here demonstrate that neither increased IkappaBalpha production which occurs as a result of RSV-induced NF-kappaB activation nor inhibition of proteasome-mediated IkappaBalpha degradation results in a reversal of RSV-induced NF-kappaB activation. Thus, while manipulation of IkappaBalpha results in reversal of TNF-alpha-induced NF-kappaB activation, manipulation of IkappaBalpha does not result in a reversal of RSV-induced NF-kappaB activation.  相似文献   

4.
Productive human immunodeficiency virus type 1 (HIV-1) infection causes sustained NF-kappaB DNA-binding activity in chronically infected monocytic cells. A direct temporal correlation exists between HIV infection and the appearance of NF-kappaB DNA-binding activity in myelomonoblastic PLB-985 cells. To examine the molecular basis of constitutive NF-kappaB DNA-binding activity in HIV1 -infected cells, we analyzed the phosphorylation and turnover of IkappaBalpha protein, the activity of the double-stranded RNA-dependent protein kinase (PKR) and the intracellular levels of NF-kappaB subunits in the PLB-985 and U937 myeloid cell models. HIV-1 infection resulted in constitutive, low-level expression of type 1 interferon (IFN) at the mRNA level. Constitutive PKR activity was also detected in HIV-1-infected cells as a result of low-level IFN production, since the addition of anti-IFN-alpha/beta antibody to the cells decreased PKR expression. Furthermore, the analysis of IkappaBalpha turnover demonstrated an increased degradation of IkappaBalpha in HIV-1-infected cells that may account for the constitutive DNA binding activity. A dramatic increase in the intracellular levels of NF-kappaB subunits c-Rel and NF-kappaB2 p100 and a moderate increase in NF-kappaB2 p52 and RelA(p65) were detected in HIV-1-infected cells, whereas NF-kappaB1 p105/p50 levels were not altered relative to the levels in uninfected cells. We suggest that HIV-1 infection of myeloid cells induces IFN production and PKR activity, which in turn contribute to enhanced IkappaBalpha phosphorylation and subsequent degradation. Nuclear translocation of NF-kappaB subunits may ultimately increase the intracellular pool of NF-kappaB/IkappaBalpha by an autoregulatory mechanism. Enhanced turnover of IkappaBalpha and the accumulation of NF-kappaB/Rel proteins may contribute to the chronically activated state of HIV-1-infected cells.  相似文献   

5.
6.
7.
We documented that the NF-kappaB signaling pathway was rapidly induced following human cytomegalovirus (HCMV) infection of human fibroblasts and that this induced NF-kappaB activity promoted efficient transactivation of the major immediate-early promoter (MIEP). Previously, we showed that the major HCMV envelope glycoproteins, gB and gH, initiated this NF-kappaB signaling event. However, we also hypothesized that there were additional mechanisms utilized by the virus to rapidly upregulate NF-kappaB. In this light, we specifically hypothesized that the HCMV virion contained IkappaBalpha kinase activity, allowing for direct phosphorylation of IkappaBalpha following virion entry into infected cells. In vitro kinase assays performed on purified HCMV virion extract identified bona fide IkappaBalpha kinase activity in the virion. The enzyme responsible for this kinase activity was identified as casein kinase II (CKII), a cellular serine-threonine protein kinase. CKII activity was necessary for efficient transactivation of the MIEP and IE gene expression. CKII is generally considered to be a constitutively active kinase. We suggest that this molecular characteristic of CKII represents the biologic rationale for the viral capture and utilization of this kinase early after infection. The packaging of CKII into the HCMV virion identifies that diverse molecular mechanisms are utilized by HCMV for rapid NF-kappaB activation. We propose that HCMV possesses multiple pathways to increase NF-kappaB activity to ensure that the correct temporal regulation of NF-kappaB occurs following infection and that sufficient threshold levels of NF-kappaB are reached in the diverse array of cells, including monocytes and endothelial cells, infected in vivo.  相似文献   

8.
9.
Secretory leucoprotease inhibitor (SLPI) is a non-glycosylated protein produced by epithelial cells, macrophages, and neutrophils and was initially identified as a serine protease inhibitor of the neutrophil proteases elastase and cathepsin G. In addition to its antiprotease activity, SLPI has been shown to exhibit anti-inflammatory properties including down-regulation of tumor necrosis factor-alpha expression by lipopolysaccharide (LPS) in monocytes, inhibition of NF-kappaB activation by IgG immune complexes in a rat model of acute lung injury, and prevention of human immunodeficiency virus infectivity in monocytic cells via as yet unidentified mechanisms. In this report we have shown that SLPI prevents LPS-induced NF-kappaB activation by inhibiting degradation of IkappaBalpha without affecting the LPS-induced phosphorylation and ubiquitination of IkappaBalpha. We have also demonstrated that SLPI prevents LPS-induced interleukin-1 receptor-associated kinase and IkappaBbeta degradation. In addition, we have demonstrated that oxidized SLPI, a variant of SLPI that has diminished antiprotease activity, cannot prevent LPS-induced NF-kappaB activation or Inhibitor kappaB alpha/beta degradation indicating that the anti-inflammatory effect of SLPI on the LPS-signaling pathway is dependent on its antiprotease activity. These results suggest that SLPI may be inhibiting proteasomal degradation of NF-kappaB regulatory proteins, an effect that is dependent on the antiprotease activity of SLPI.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
Acute alcohol use is associated with impaired immune responses and decreased proinflammatory cytokine production. Our earlier studies have shown that acute alcohol intake inhibits NF-kappaB DNA binding in an IkappaBalpha-independent manner. We report using human peripheral blood monocytes and Chinese hamster ovary cells transfected with CD14 cells that acute alcohol treatment in vitro exerts NF-kappaB inhibition by disrupting phosphorylation of p65. Immunoprecipitation of p65 and IkappaBalpha revealed that acute alcohol exposure for 1 h decreased NF-kappaB-IkappaBalpha complexes in the cytoplasm. Phosphorylation of p65 at Ser(536) is mediated by IkappaB kinase (IKK)beta and is required for NF-kappaB-dependent cellular responses. We show that acute alcohol treatment decreased LPS-induced IKKalpha and IKKbeta activity resulting in decreased phosphorylation of p65 at Ser(536). Furthermore, nuclear expression of IKKalpha increased after alcohol treatment, which may contribute to inhibition of NF-kappaB. Decreased phosphorylation of nuclear p65 at Ser(276) was likely not due to alcohol-induced inhibition of protein kinase A and mitogen- and stress-activated protein kinase-1 activity. Although decreased IkappaBalpha phosphorylation after acute alcohol treatment was attributable to reduced IKKbeta activity, degradation of IkappaBalpha during alcohol exposure was IKKbeta-independent. Alcohol-induced degradation of IkappaBalpha in the presence of a 26S proteasome inhibitor suggested proteasome-independent IkappaBalpha degradation. Collectively, our studies suggest that acute alcohol exposure modulates IkappaBalpha-independent NF-kappaB activity primarily by affecting phosphorylation of p65. These findings further implicate an important role for IKKbeta in the acute effects of alcohol in immune cells.  相似文献   

18.
Constitutive NF-kappaB activity has emerged as an important cell survival regulator. Canonical inducible NF-kappaB activation involves IkappaB kinase (IKK)-dependent dual phosphorylation of Ser 32 and 36 of IkappaBalpha to cause its beta-TrCP-dependent ubiquitylation and proteasomal degradation. We recently reported that constitutive NF-kappaB (p50/c-Rel) activity in WEHI231 B cells is maintained through proteasome inhibitor-resistant (PIR) IkappaBalpha degradation in a manner that requires Ser 32 and 36, without the requirement of a direct interaction with beta-TrCP. Here we specifically examined whether dual phosphorylation of Ser 32 and 36 was required for PIR degradation. Through mutagenesis studies, we found that dual replacement of Ser 32 and 36 with Glu permitted beta-TrCP and proteasome-dependent, but not PIR, degradation. Moreover, single replacement of either Ser residue with Leu permitted PIR degradation in WEHI231 B cells. These results indicate that PIR degradation occurs in the absence of dual phosphorylation, thereby explaining the beta-TrCP-independent nature of the PIR pathway. Additionally, we found evidence that PIR IkappaBalpha degradation controls constitutive NF-kappaB activation in certain multiple myeloma cells. These results suggest that B lineage cells can differentiate between PIR and canonical IkappaBalpha degradation through the absence or presence of dually phosphorylated IkappaBalpha.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号