首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The leukocyte function-associated molecule 1 (LFA-1, CD11a/CD18) is a membrane glycoprotein which functions in cell-cell adhesion by heterophilic interaction with intercellular adhesion molecule 1 (ICAM-1). LFA-1 consists of an alpha subunit (Mr = 180,000) and a beta subunit (Mr = 95,000). We report the molecular biology and protein sequence of the alpha subunit. Overlapping cDNAs containing 5,139 nucleotides were isolated using an oligonucleotide specified by tryptic peptide sequence. The mRNA of 5.5 kb is expressed in lymphoid and myeloid cells but not in a bladder carcinoma cell line. The protein has a 1,063-amino acid extracellular domain, a 29-amino acid transmembrane region, and a 53-amino acid cytoplasmic tail. The extracellular domain contains seven repeats. Repeats V-VII are in tandem and contain putative divalent cation binding sites. LFA-1 has significant homology to the members of the integrin superfamily, having 36% identity with the Mac-1 and p150,95 alpha subunits and 28% identity with other integrin alpha subunits. An insertion of approximately 200 amino acids is present in the NH2-terminal region of LFA-1. This "inserted/interactive" or I domain is also present in the p150,95 and Mac-1 alpha subunits but is absent from other integrin alpha subunits sequenced to date. The I domain has striking homology to three repeats in human von Willebrand factor, two repeats in chicken cartilage matrix protein, and a region of complement factor B. These structural features indicate a bipartite evolution from the integrin family and from an I domain family. These features may also correspond to relevant functional domains.  相似文献   

2.
We have characterized galectin family proteins in adult tissues of Xenopus laevis and purified 14-kDa and 36-kDa proteins from the liver. The liver galectins showed comparable hemagglutination activities to those of mammalian galectins. Furthermore, we isolated five galectin cDNAs from a Xenopus liver library. These cDNAs revealed that X. laevis galectins (xgalectins) form a family consisting of at least proto and tandem repeat types based on their domain structures, like the mammalian galectin family. Two proto-type xgalectins, -Ia and -Ib, exhibited a high sequence identity (91%) with each other at the amino acid level and were most similar (49-50% identity) to human galectin-1. From their sequence similarity and ubiquitous tissue distributions, xgalectins-Ia and -Ib both seemed to be Xenopus homologues of mammalian galectin-1. Three tandem repeat-type xgalectins were newly identified. Two of them, xgalectins-IIa and -IIIa, seemed to be homologous to human galectins-4 and -9, respectively, judging from their high sequence similarities (42-50% identity). However, xgalectin-IVa seemed to be a novel type. Distributions of mRNAs of xgalectins were analyzed by northern hybridization. In addition to adult tissues, either of three tandem repeat-type xgalectins were expressed in whole embryos. Moreover, amino acid sequence analysis of liver proteins indicated that xgalectins-Ia, -IIa, and -IIIa are produced as abundant galectins in the adult liver.  相似文献   

3.
Human TWIK-1, which has been cloned recently, is a new structural type of weak inward rectifier K+ channel. Here we report the structural and functional properties of TREK-1, a mammalian TWIK-1-related K+ channel. Despite a low amino acid identity between TWIK-1 and TREK-1 (approximately 28%), both channel proteins share the same overall structural arrangement consisting of two pore-forming domains and four transmembrane segments (TMS). This structural similarity does not give rise to a functional analogy. K+ currents generated by TWIK-1 are inwardly rectifying while K+ currents generated by TREK-1 are outwardly rectifying. These channels have a conductance of 14 pS. TREK-1 currents are insensitive to pharmacological agents that block TWIK-1 activity such as quinine and quinidine. Extensive inhibitions of TREK-1 activity are observed after activation of protein kinases A and C. TREK-1 currents are sensitive to extracellular K+ and Na+. TREK-1 mRNA is expressed in most tissues and is particularly abundant in the lung and in the brain. Its localization in this latter tissue has been studied by in situ hybridization. TREK-1 expression is high in the olfactory bulb, hippocampus and cerebellum. These results provide the first evidence for the existence of a K+ channel family with four TMS and two pore domains in the nervous system of mammals. They also show that different members in this structural family can have totally different functional properties.  相似文献   

4.
The complete cDNA sequence of a mitochondrial protein from Chinese hamster ovary cells, designated P1, which was originally identified as a microtubule-related protein (Gupta, R.S., Ho, T.K.W., Moffat, M.R.K., and Gupta, R. (1982) J. Biol. Chem. 257, 1071-1078), has been determined. The P1 cDNA encodes a protein of 60,983 Da including a 26-amino acid putative mitochondrial targeting sequence at its N-terminal end. The deduced amino acid sequence of Chinese hamster P1 shows 97% identity to the human P1 protein. Most interestingly, the amino acid sequences of mammalian P1 proteins show extensive sequence homology (42-60% identical residues and an additional 15-25% conservative replacements) to the "chaperonin" family of bacterial, yeast, and plant proteins (viz. groEL protein of Escherichia coli, hsp 60 protein of yeast, and ribulose-1,5-bisphosphate carboxylase subunit binding protein of plant chloroplasts) and to the 60-65-kDa major antigenic protein of mycobacteria and Coxiella burnetii. The homology between mammalian P1 and other proteins begins after the putative mitochondrial presequence and extends up to the C-terminal end. Furthermore, similar to the chaperonin family of proteins, P1 appears to exist in cells as a homooligomeric complex of seven subunits and shows ATPase activity. These observations strongly indicate that P1 protein is a member of the chaperonin family and that it may be involved in a similar function in mammalian cells.  相似文献   

5.
Lim HH  Park BJ  Choi HS  Park CS  Eom SH  Ahnn J 《Gene》1999,240(1):35-43
Two putative homologues of large conductance Ca(2+)-activated K(+) channel alpha-subunit gene (slowpoke or slo) were revealed by C. elegans genome sequencing. One of the two genes, F08B12.3 (Ce-slo-2), shows a relatively low amino acid sequence similarity to other Slo sequences and lacks key functional motifs, which are important for calcium and voltage sensing. However, its overall structure and regions of homology, which are conserved in all Slo proteins, suggest that Ce-SLO-2 should belong to the Slo channel family. We have cloned a full-length cDNA of the Ce-slo-2, which encodes a protein containing six putative transmembrane segments with a K(+)-selective pore and a large C-terminal cytosolic domain. Green fluorescent protein (GFP) and whole-mount immunostaining analyses revealed that Ce-slo-2 is specifically expressed in neuronal cells at the nerve ring, at the ventral nerve cord of the mid-body, and at the tail region. We have also identified a putative human counterpart of Ce-slo-2 from a human brain EST database, which shows a stretch of highly conserved amino acid residues. Northern blot and mRNA dot blot analyses revealed a strong and specific expression in brain and skeletal muscle. Taken together, our data suggest that Ce-slo-2 may constitute an evolutionarily conserved gene encoding a potassium channel that has specific functions in neuronal cells.  相似文献   

6.
A novel two-pore domain K+ channel,TRESK, is localized in the spinal cord   总被引:5,自引:0,他引:5  
To find a novel human ion channel gene we have executed an extensive search by using a human genome draft sequencing data base. Here we report a novel two-pore domain K+ channel, TRESK (TWIK-related spinal cord K+ channel). TRESK is coded by 385 amino acids and shows low homology (19%) with previously characterized two-pore domain K+ channels. However, the most similar channel is TREK-2 (two-pore domain K+ channel), and TRESK also has two pore-forming domains and four transmembrane domains that are evolutionarily conserved in the two-pore domain K+ channel family. Moreover, we confirmed that TRESK is expressed in the spinal cord. Electrophysiological analysis demonstrated that TRESK induced outward rectification and functioned as a background K+ channel. Pharmacological analysis showed TRESK to be inhibited by previously reported K+ channel inhibitors Ba2+, propafenone, glyburide, lidocaine, quinine, quinidine, and triethanolamine. Functional analysis demonstrated TRESK to be inhibited by unsaturated free fatty acids such as arachidonic acid and docosahexaenoic acid. TRESK is also sensitive to extreme changes in extracellular and intracellular pH. These results indicate that TRESK is a novel two-pore domain K+ channel that may set the resting membrane potential of cells in the spinal cord.  相似文献   

7.
G M Cowan  A A Gann  N E Murray 《Cell》1989,56(1):103-109
One polypeptide, designated S, confers sequence-specificity to the multisubunit type I restriction enzymes. Two families of such enzymes, K and A, include members that recognize diverse, bipartite, target sequences. The S polypeptides of the K family, while having areas of near identity, also contain two extensive regions of variable sequence. We now show that one of these, comprising the N-terminal 150 amino acids, specifies recognition of one component of the bipartite target sequence. We have determined the sequence recognized by EcoE, a member of the A family. This sequence, 5'GAG(N7)ATGC, has the trinucleotide GAG in common with EcoA and with StySB of the K family. We determined the nucleotide sequences of the S genes of EcoA and EcoE, and compared their predicted amino acid sequences with each other and with those of the five members of the K family. There is no general sequence similarity between families, but the domain of the S polypeptide of StySB, which specifies GAG, shows nearly 50 per cent identity with the amino variable region of the S polypeptides of EcoA and EcoE. A complex domain that recognizes and directs methylation of GAG is therefore common to enzymes of generally dissimilar amino acid sequence.  相似文献   

8.
The channel proteins so far known are transmembrane oligomers arranged in a manner that the polar residues are lining the central ion-conducting hydrophilic pore. In the last decade, electrophysiology and molecular biology studies revealed the principal similarity in the functional properties and membrane topology within a large family of sodium-conducting channels. Amiloride-sensitive channels are expressed in the apical membranes of renal epithelia. Moreover, in different mammalian cells non-voltage-gated sodium-selective channels have been recently found. According to molecular cloning of the respective DNAs and amino acid sequence analysis, epithelial channel subunits, degenerins and some other channel proteins display a significant homology in the regions forming two presumable transmembrane domains. This paper reviews some relevant data and current opinions of the superfamily of sodium-conducting cation channels.  相似文献   

9.
Voltage-sensitive cation-selective ion channels of the voltage-gated ion channel (VGC) superfamily were examined by a combination of sequence alignment and phylogenetic tree construction procedures. Segments of the alpha-subunits of K+-selective channels homologous to the structurally elucidated KcsA channel of Streptomyces lividans were multiply aligned, and this alignment provided the database for computer-assisted structural analyses and phylogenetic tree construction. Similar analyses were conducted with the four homologous repeats of the alpha-subunits from representative Ca2+- and Na+-selective channels, as well as with the ensemble of K+, Ca2+ and Na+ channels. In both the single subunit of the K+ channels and the individual repeats of the Ca2+ and Na+ channels, the analyses suggest the occurrence of at least two tandemly arranged modules corresponding to the predicted voltage-sensor domain and the pore domain. The phylogenetic analyses reveal strict clustering of segments according to cation-selectivity and repeat unit. We surmise that the pore module of the prokaryotic K+ channel was the primordial polypeptide upon which other modules were superimposed during evolution in order to generate phenotypic diversity. These observations may prove applicable to all members of the VGC family yet to be discovered throughout the prokaryotic and eukaryotic kingdoms.  相似文献   

10.
A new family of cyclophilins with an RNA recognition motif (RRM) has members in vertebrates, roundworms and flatworms. We have identified a Drosophilacyclophilin, Dcyp33, with a high degree of amino acid sequence identity and similarity with other members of the family. Dcyp33 interacts through its RRM domain with the third PHD finger of trithorax. This interaction is conserved in the human homologues of these proteins, Cyp33 and MLL. Over expression of Dcyp33 in DrosophilaSL1 cells results in down-regulation of AbdominalB Hoxgene expression, mirroring the effect of human Cyp33 on the expression of human HOXgenes.  相似文献   

11.
Small conductance calcium-activated potassium channels (SK, K(Ca)) are a family of voltage-independent K+ channels with a distinct physiology and pharmacology. The bee venom toxin apamin inhibits exclusively the three cloned SK channel subtypes (SK1, SK2, and SK3) with different affinity, highest for SK2, lowest for SK1, and intermediate for SK3 channels. The high selectivity of apamin made it a valuable tool to study the molecular makeup and function of native SK channels. Three amino acids located in the outer vestibule of the pore are of particular importance for the different apamin sensitivities of SK channels. Chimeric SK1 channels, enabling the homomeric expression of the rat SK1 (rSK1) subunit and containing the core domain (S1-S6) of rSK1, are apamin-insensitive. By contrast, channels formed by the human orthologue human SK1 (hSK1) are sensitive to apamin. This finding hinted at the involvement of regions beyond the pore as determinants of apamin sensitivity, because hSK1 and rSK1 have an identical amino acid sequence in the pore region. Here we investigated which parts of the channels outside the pore region are important for apamin sensitivity by constructing chimeras between apamin-insensitive and -sensitive SK channel subunits and by introducing point mutations. We demonstrate that a single amino acid situated in the extracellular loop between the transmembrane segments S3 and S4 has a major impact on apamin sensitivity. Our findings enabled us to convert the hSK1 channel into a channel that was as sensitive for apamin as SK2, the SK channel with the highest sensitivity.  相似文献   

12.
Bovine interferon alpha genes. Structure and expression   总被引:3,自引:0,他引:3  
The bovine genome contains a gene family of interferon-alpha s (bIFN-alpha) that consists of at least five distinct members. Four of the bIFN-alpha genes isolated show a high degree of homology (97% in the nucleotide sequence and 93% in amino acid sequence). The overall homology in amino acid sequence of bIFN-alpha to human, murine, and rat IFNs-alpha is approximately 60%. Yet there are amino acid clusters (positions 28-41 and 118-146) which are highly conserved throughout the mammalian evolution and in which the overall homology can be as high as 86%. Within the C terminus conserved cluster there is a sequence containing 9 amino acids completely conserved in 16 mammalian IFNs-alpha and of these, 7 are also shared with a similar domain in some bacterial toxins, implying a common functional role for these domains. One of the genes, IFN-alpha C, was expressed in Escherichia coli. The purified bacterial IFN (specific activity, 2 X 10(8) units/mg) exhibited antiviral activity on bovine cells but no detectable activity was demonstrated on human and simian cells.  相似文献   

13.
Allosteric regulation of heteromultimeric ATP-sensitive potassium (K(ATP)) channels is unique among protein systems as it implies transmission of ligand-induced structural adaptation at the regulatory SUR subunit, a member of ATP-binding cassette ABCC family, to the distinct pore-forming K+ (Kir6.x) channel module. Cooperative interaction between nucleotide binding domains (NBDs) of SUR is a prerequisite for K(ATP) channel gating, yet pathways of allosteric intersubunit communication remain uncertain. Here, we analyzed the role of the ED domain, a stretch of 15 negatively charged aspartate/glutamate amino acid residues (948-962) of the SUR2A isoform, in the regulation of cardiac K(ATP) channels. Disruption of the ED domain impeded cooperative NBDs interaction and interrupted the regulation of K(ATP) channel complexes by MgADP, potassium channel openers, and sulfonylurea drugs. Thus, the ED domain is a structural component of the allosteric pathway within the K(ATP) channel complex integrating transduction of diverse nucleotide-dependent states in the regulatory SUR subunit to the open/closed states of the K+-conducting channel pore.  相似文献   

14.
Using several consensus sequences for the 106 amino acid residue alpha-spectrin repeat segment as probes we searched animal sequence databases using the BLAST program in order to find proteins revealing limited, but significant similarity to spectrin. Among many spectrins and proteins from the spectrin-alpha-actinin-dystrophin family as well as sequences showing a rather high degree of similarity in very short stretches, we found seven homologous animal sequences of low overall similarity to spectrin but showing the presence of one or more spectrin-repeat motifs. The homology relationship of these sequences to alpha-spectrin was further analysed using the SEMIHOM program. Depending on the probe, these segments showed the presence of 6 to 26 identical amino acid residues and a variable number of semihomologous residues. Moreover, we found six protein sequences, which contained a sequence fragment sharing the SH3 (sarc homology region 3) domain homology of 42-59% similarity. Our data indicate the occurrence of motifs of significant homology to alpha-spectrin repeat segments among animal proteins, which are not classical members of the spectrin-alpha-actinin-dystrophin family. This might indicate that these segments together with the SH3 domain motif are conserved in proteins which possibly at the early stage of evolution were close cognates of spectrin-alpha-actinin-dystrophin progenitors but then evolved separately.  相似文献   

15.
The multigene family encoding the small subunit polypeptides of ribulose-1,5-bisphosphate carboxylase/oxygenase in the crucifer Arabidopsis thaliana has been isolated and the organization and structure of the individual members determined. The family consists of four genes which have been divided into two subfamilies on the basis of linkage and DNA and amino acid sequence similarities. Three of the genes, designated ats1B, ats2B, and ats3B, reside in tandem on an 8 kb stretch of the chromosome. These genes share greater than 95% similarity in DNA sequence and encode polypeptides identical in length and 96.7% similar in amino acid sequence. The fourth gene, ats1A, is at least 10 kb removed from, or completely unlinked to the B subfamily. The B subfamily genes are more similar to each other than to ats1A in nucleotide and amino acid sequence. All four genes are interupted by two introns whose placement within the coding region of the genes is conserved. The introns of the B subfamily genes are similar in length and nucleotide sequence, but show no similarity to the introns of ats1A. Comparison of the DNA sequences within the immediate 5 and 3 flanking sequences among the genes revealed only limited regions of homology. S1 analysis shows that all four genes are expressed.  相似文献   

16.
17.
The lymphocyte function-associated molecule 1 (LFA-1, CD11a/CD18) is an integrin that mediates adhesion of immune cells by interaction with two members of the Ig superfamily, ICAM-1 and ICAM-2. LFA-1 consists of an alpha subunit (Mr = 180,000) and a beta subunit (Mr = 95,000). We report here the isolation and expression of the murine alpha subunit cDNA (GenBank accession no. M60778). The deduced sequence comprises a 1061 amino acid extracellular domain, a 29 amino acid transmembrane region, and a 50 amino acid cytoplasmic domain. It has a 72% amino acid identity with its human counterpart and 34% identity with the murine Mac-1 alpha subunit. The murine LFA-1 alpha subunit could be expressed on the cell surface of a fibroblastoid cell line, COS, by cotransfection with either the human or murine beta subunit cDNA.  相似文献   

18.
A cDNA encoding the human fur gene product was isolated from a human hepatoma cell line. The cDNA encodes a protein with significant amino acid sequence identity to the prokaryotic subtilisin family of serine proteases. More extensive sequence identity was found when the protein was compared with eukaryotic proteases such as PRB1 of Saccharomyces cerevisiae, and with PC2 and PC3, the only other known mammalian subtilisin-like proteases. In contrast to these proteins, however, the fur gene product shares a more extensive topographic and functional homology with the KEX2 endoprotease of S. cerevisiae. Each protease contains a signal peptide, a glycosylated extra cytoplasmic domain, a hydrophobic membrane-spanning region, and a short, hydrophilic "tail" sequence. As with KEX2, the expressed human protease was shown to cleave mammalian proproteins at their paired basic amino acid processing sites. We have, therefore, proposed the function-based acronym PACE (paired basic amino acid cleaving enzyme) for this prototypic mammalian proprotein processing enzyme.  相似文献   

19.
20.
Cytoplasmic dynein is a large multisubunit motor protein that moves various cargoes toward the minus ends of microtubules. In addition to the previously identified heavy, intermediate, and light intermediate chains, it has recently been recognized that cytoplasmic dynein also has several light chain subunits with apparent molecular weights between 8-20 kDa. To systematically identify the light chains of purified rat brain cytoplasmic dynein, peptide sequences were obtained from each light chain band resolved by gel electrophoresis. Both members of the tctex1 light chain family, tctex1 and rp3, were identified in a single band. Only one member of the roadblock family, roadblock-2, was found. Two members of the LC8 family were resolved as separate bands, the previously identified LC8 subunit, and a second novel cytoplasmic dynein family member, LC8b. The tissue distribution of these two dynein LC8 subunits differed, although LC8b was the major family member in brain. Database searches found that both LC8a and LC8b were also present in several mammalian species, and a third mammalian LC8 sequence, LC8c was found in the human database. The amino acid sequences of both LC8a and LC8b were completely conserved in mammals. LC8a and LC8b differ in only six of the 89 amino acids. The amino acid differences between LC8a and LC8b were located near the N-terminus of the molecules, and most were in the outward facing alpha-helices of the LC8 dimer. When the mammalian LC8a sequence was compared to the LC8 sequences found in six other animal species including Xenopus and Drosophila, there was, on average, 94% sequence identity. More variation was found in LC8 sequences obtained from plants, fungi, and parasites. LC8c differed from the other two human LC8 sequences in that it has amino acid substitutions in the intermediate chain binding domain at the C-terminal of the molecule. The position of amino acid substitutions of the three mammalian LC8 family members is consistent with the hypothesis that they bind to different proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号