首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gao Y  Jiang M  Yang T  Ni J  Chen J 《Cell research》2006,16(6):539-547
hPFTAIRE1 (PFTK1), a Cdc2-related protein kinase, is highly expressed in human brain. It exhibits cytoplasmic distribution in Hela cells, although it contains two nuclear localization signals (NLSs) in its N-terminus. To search for its substrates and regulatory components, we screened a two-hybrid library by using the full-length hPFTAIRE1 as a bait. Four 14-3-3 isoforms (β,ε,η,τ) were identified interacting with the hPFTAIRE1. We found a putative 14-3-3 binding consensus motif(RHSSPSS) in the hPFTAIRE 1, which overlapped with its second NLS. Deletion of the RHSSPSS motif or substitution of Ser^119 gwithAla in the conserved binding motif abolished the specific interaction between the hPFTAIRE 1 and the 14-3 -3 proteins. The mutant S 120A hPFTAIRE1 also showed a weak interaction to the 14-3-3 proteins. The results suggested that the Ser^119 is crucial for the interaction between hPFTAIREI and the 14-3-3 proteins. All the hPFTAIRE1 mutants distributed in cytoplasm of Hela cells and human neuroblastoma cells (SH-SY5Y) when fused to the C-terminus of a green fluorescent protein (GFP), indicating that binding with the 14-3-3 proteins does not contribute to the subcellular localization of the hPFTAIRE1, although the binding may be involved in its signaling regulation.  相似文献   

2.
Muslin AJ  Xing H 《Cellular signalling》2000,12(11-12):703-709
14-3-3 family of proteins plays a key regulatory role in signal transduction, checkpoint control, apoptotic, and nutrient-sensing pathways. 14-3-3 proteins act by binding to partner proteins, and this binding often leads to the altered subcellular localization of the partner. 14-3-3 proteins promote the cytoplasmic localization of many binding partners, including the pro-apoptotic protein BAD and the cell cycle regulatory phosphatase Cdc25C, but they can also promote the nuclear localization of other partners, such as the catalytic subunit of telomerase (TERT). In some cases, 14-3-3 binding has no effect on the subcellular localization of a partner. 14-3-3 may affect the localization of a protein by interfering with the function of a nearby targeting sequence, such as a nuclear localization sequence (NLS) or a nuclear export sequence (NES), on the binding partner.  相似文献   

3.
The receptor for parathyroid hormone (PTH) and PTH-related protein (PTHrP) regulates calcium homeostasis, bone remodeling and skeletal development. 14-3-3 proteins bind to signaling proteins and act as molecular scaffolds and regulators of subcellular localization. We show that the parathyroid hormone receptor (PTHR) interacts with 14-3-3 and the proteins colocalize within the cell. 14-3-3 interacts with the C-terminal tail of the receptor containing a consensus 14-3-3 binding motif, but additional binding sites are also used. Protein kinase-A treatment of the receptor and especially the C-terminal tail reduces 14-3-3 binding. The expressed C-terminal tail is primarily localized in the nucleus, supporting the function of a putative nuclear localization signal that could be involved in the previously described nuclear localization of PTHR. The observed interaction between PTHR and the 14-3-3 protein implies that 14-3-3 could contribute to regulation of PTHR signaling.  相似文献   

4.
5.
6.
Apoptosis signal-regulating kinase 1 (ASK1) is a critical mediator of apoptotic signaling pathways initiated by a variety of death stimuli. Its activity is tightly controlled by various mechanisms such as covalent modification and protein-protein interaction. One of the proteins that control ASK1 function is 14-3-3zeta, a member of the 14-3-3 protein family. Here, we report that ASK1 is capable of binding to other isoforms of 14-3-3, suggesting that binding ASK1 is a general property of the 14-3-3 family. In support of this notion, mutational analysis revealed that the ASK1/14-3-3 interaction was mediated by the conserved amphipathic groove of 14-3-3 with some residue selectivity. Functionally, expression of various isoforms of 14-3-3 suppressed ASK1-induced apoptosis. To understand how 14-3-3 controls the ASK1 activity, we examined intracellular localization of ASK1 upon 14-3-3 co-expression. We found that 14-3-3 co-expression is correlated with the translocation of ASK1 from the cytoplasm to a perinuclear localization, likely the ER compartment. Consistent with this notion, ASK1(S967A), a 14-3-3 binding defective mutant of ASK, showed no change in intracellular distribution upon 14-3-3 co-expression. These data support a model that 14-3-3 proteins regulate the proapoptotic function of ASK1 in part by controlling its subcellular distribution.  相似文献   

7.
8.
Gao C  Li X  Lam M  Liu Y  Chakraborty S  Kao HY 《FEBS letters》2006,580(21):5096-5104
CRM1, 14-3-3 proteins, and CaMK play important roles in trafficking of HDAC7, but the interplay between these proteins in this process is not clearly understood. Here, we show that CRM1 is capable of promoting cytoplasmic localization of wild-type and mutant HDAC7 (S178A/S344A/S479A), which is normally found in the nucleus. Using phospho-specific antibodies to HDAC7, we demonstrate that CaMK I promotes phosphorylation of S178, S344, and S479 of HDAC7. We also show that endogenous S178-phosphorylated HDAC7 is localized in both the nucleus and the cytoplasm, whereas S344- and S479-phosphorylated HDAC7 are exclusively localized in the nucleus. An HDAC7 mutant, S178E/S344E/S479E, which lost the ability to bind 14-3-3s, is localized in both the nucleus and the cytoplasm. Furthermore, the nuclear export of S178E/S344E/S479E is inhibited by LMB, but is enhanced by the CRM1. Taken together, these results strongly suggest that CRM1 mediated-nuclear export of HDAC7 is independent of HDAC7 phosphorylation and its association with 14-3-3s.  相似文献   

9.
10.
Persistent activation of protein kinase C (PKC) is required for the expression of synaptic plasticity in the brain. There are several mechanisms proposed that can lead to the prolonged activation of PKC. These include long lasting production of lipid activators (diacylglycerol and fatty acid) through mitogen-activated protein (MAP) kinase pathway, and a modification of PKC by reactive oxygen species. In nerve growth factor (NGF)-differentiated PC12 cells, we found that constitutive and autonomous Ca2+-independent PKC activity is associated with 14-3-3 zeta. Because PKC and 14-3-3 zeta are both involved in synaptic plasticity and learning and memory, we examined whether PKC interacts with 14-3-3 zeta in the brain and whether the PKC/14-3-3 zeta complex has autonomous activity. Here we show that three subclasses of PKC, Ca2+-dependent classical PKC, Ca2+-independent novel PKC, and Ca2+-independent and diacylglycerol-insensitive atypical PKC, all interact with 14-3-3 zeta in the rodent brain. The pool size of 14-3-3 zeta bound form of PKC is small (1-4% of each PKC isoform), but they show constitutive and autonomous activity. Our study indicates that the binding of PKC with 14-3-3 zeta is at least in part independent of phosphorylation of PKC and that the C1 domain of PKC is involved in the binding. As both molecules are enriched in synaptic locus, the constitutive PKC activity and its interaction with 14-3-3 zeta could be a mechanism for the persistent PKC activation in the brain.  相似文献   

11.
Zyxin is a zinc-binding phosphoprotein known to regulate cell migration, adhesion, and cell survival. Zyxin also plays a role in signal transduction between focal adhesions and the nuclear compartment. However, the mechanism of Zyxin shuttling to nucleus is still unclear. Here, we identify that the GlcNAc transferase (O-linked GlcNAc [O-GlcNAc] transferase) can O-GlcNAcylate Zyxin and regulate its nuclear localization. We show that O-GlcNAc transferase O-GlcNAcylates Zyxin at two residues, serine 169 (Ser-169) and Ser-246. In addition, O-GlcNAcylation of Ser-169, but not Ser-246, enhances its interaction with 14-3-3γ, which is a phosphoserine/threonine-binding protein and is reported to bind with phosphorylated Zyxin. Furthermore, we found that 14-3-3γ could promote the nuclear localization of Zyxin after Ser-169 O-GlcNAcylation by affecting the function of the N-terminal nuclear export signal sequence; functionally, UV treatment increases the O-GlcNAcylation of Zyxin, which may enhance the nuclear location of Zyxin. Finally, Zyxin in the nucleus maintains homeodomain-interacting protein kinase 2 stability and promotes UV-induced cell death. In conclusion, we uncover that the nuclear localization of Zyxin can be regulated by its O-GlcNAcylation, and that this protein may regulate UV-induced cell death.  相似文献   

12.
Through protein-protein binding assays, we found that HCV core protein interacted with 14-3-3epsilon protein. Interestingly, the expression of HCV core protein induced apoptosis in 293T cells. The apoptosis induced by core expression is accompanied by translocation of Bax from cytosol to mitochondria, disruption of mitochondrial membrane potential, cytochrome c release, and activation of caspase-9 and caspase-3. Furthermore, over-expression of 14-3-3epsilon inhibited the core-induced apoptosis and Bax translocation to mitochondria. These results indicate that HCV core protein induces the Bax-mediated apoptosis by interacting with 14-3-3epsilon protein in 293T cells. As a mechanism of apoptosis induction by HCV core, we propose that the interaction of HCV core with 14-3-3epsilon causes the dissociation of Bax from the Bax/14-3-3epsilon complex in cytosol, and the free Bax protein provokes activation of the mitochondrial apoptotic pathway.  相似文献   

13.
We have previously shown that 14-3-3 protein, amultifunctional adaptor molecule involved in many aspects ofsignal transduction pathways, is a target antigen for thecancer-associated human monoclonal antibody. Although recentevidences suggest a crucial role of 14-3-3 family members inthe control of cell growth and differentiation, their actualcontribution toward tumor development is still controversial. Inthis article, we examined the effect of enforced 14-3-3overexpression on cell growth of the human lung adenocarcinomacell line, A549. To address this issue, we obtained14-3-3 protein-inducible A549 sublines by transfection with14-3-3 expression vector under the control ofdexamethasone-inducible promoter. We found that 14-3-3 proteininduction in some of these sublines promoted their cell proliferation. Microscopic observation revealed that morphologyof these cells became aggressive multilayer condition,suggesting that malignant phenotypes are also acquired uponectopic induction of 14-3-3 protein.  相似文献   

14.
Mammalian Par3alpha and Par3beta/Par3L participate in cell polarity establishment and localize to tight junctions of epithelial cells; Par3alpha acts via binding to atypical PKC (aPKC). Here we show that Par3beta as well as Par3alpha interacts with 14-3-3 proteins in a phosphorylation-dependent manner. In the interaction, Ser-746 of Par3beta and the corresponding residue of Par3alpha (Ser-814) likely play a crucial role, since replacement of these residues by unphosphorylatable alanine results in a loss of interacting activity. The mutant Par3 proteins with the replacement are correctly recruited to tight junctions of MDCK cells and to membrane ruffles induced by an active form of the small GTPase Rac in HeLa cells. Thus, the interaction with 14-3-3 appears to be dispensable to Par3 localization. Consistent with this, the Par3alpha-14-3-3 interaction does not inhibit the Par3alpha-aPKC association required for the Par3alpha localization, although the aPKC-binding site lies close to the Ser-814-containing, 14-3-3-interacting region.  相似文献   

15.
The 14-3-3 protein family interacts with more than 2000 different proteins in mammals, as a result of its specific phospho-serine/phospho-threonine binding activity. Seven paralogs are strictly conserved in mammalian species. Here, we show that during adipogenic differentiation of 3T3-L1 preadipocytes, the level of each 14-3-3 protein paralog is regulated independently. For instance 14-3-3β, γ, and η protein levels are increased compared to untreated cells. In contrast, 14-3-3ε protein levels decreased after differentiation while others remained constant. In silico analysis of the promoter region of each gene showed differences that explain the results obtained at mRNA and protein levels.  相似文献   

16.
In higher eukaryotes, 14-3-3 proteins participate in numerous cellular processes, and carry out their function through a variety of different molecular mechanisms, including regulation of protein localization and enzyme activation. Here, it is shown that the two yeast 14-3-3 homologues, Bmh1p and Bmh2p, form a complex with neutral trehalase (Nth1p), an enzyme that is responsible for trehalose degradation and is required in a variety of stress conditions. In a purified in vitro system, either one of the two 14-3-3 yeast isoforms are necessary for complete activation of neutral trehalase (Nth1p) after phosphorylation by PKA. It is further demonstrated that Bmh1p and Bmh2p bind to the amino-terminal region of phosphorylated trehalase, thereby modulating its enzymatic activity. This work represents the first demonstration of enzyme activation mediated by 14-3-3 binding in yeast.  相似文献   

17.
Syx is a Rho-specific guanine nucleotide exchange factor (GEF) that localizes at cell-cell junctions and promotes junction stability by activating RhoA and the downstream effector Diaphanous homolog 1 (Dia1). Previously, we identified several molecules, including 14-3-3 proteins, as Syx-interacting partners. In the present study, we show that 14-3-3 isoforms interact with Syx at both its N- and C-terminal regions in a phosphorylation-dependent manner. We identify the protein kinase D-mediated phosphorylation of serine 92 on Syx, and additional phosphorylation at serine 938, as critical sites for 14-3-3 association. Our data indicate that the binding of 14-3-3 proteins inhibits the GEF activity of Syx. Furthermore, we show that phosphorylation-deficient, 14-3-3-uncoupled Syx exhibits increased junctional targeting and increased GEF activity, resulting in the strengthening of the circumferential junctional actin ring in Madin-Darby canine kidney cells. These findings reveal a novel means of regulating junctional Syx localization and function by phosphorylation-induced 14-3-3 binding and further support the importance of Syx function in maintaining stable cell-cell contacts.  相似文献   

18.
Heterotrimeric G protein is involved in plant growth and development, while the role of rice (Oryza sativa) G protein γ subunit qPE9-1 in response to low-phosphorus (LP) conditions remains unclear. The gene expression of qPE9-1 was significantly induced in rice roots under LP conditions. Rice varieties carrying the qPE9-1 allele showed a stronger primary root response to LP than the varieties carrying the qpe9-1 allele (mutant of the qPE9-1 allele). Transgenic rice plants with the qPE9-1 allele had longer primary roots and higher P concentrations than those with the qpe9-1 allele under LP conditions. The plasma membrane (PM) H+-ATPase was important for the qPE9-1-mediated response to LP. Furthermore, OsGF14b, a 14-3-3 protein that acts as a key component in activating PM H+-ATPase for root elongation, is also involved in the qPE9-1 mediation. Moreover, the overexpression of OsGF14b in WYJ8 (carrying the qpe9-1 allele) partially increased primary root length under LP conditions. Experiments using R18 peptide (a 14-3-3 protein inhibitor) showed that qPE9-1 is important for primary root elongation and H+ efflux under LP conditions by involving the 14-3-3 protein. In addition, rhizosheath weight, total P content, and the rhizosheath soil Olsen-P concentration of qPE9-1 lines were higher than those of qpe9-1 lines under soil drying and LP conditions. These results suggest that the G protein γ subunit qPE9-1 in rice plants modulates root elongation for phosphorus uptake by involving the 14-3-3 protein OsGF14b and PM H+-ATPase, which is required for rice P use.  相似文献   

19.
A-kinase anchoring proteins (AKAPs) target the cAMP-regulated protein kinase (PKA) to its physiological substrates. We recently identified a novel anchoring protein, called AKAP-Lbc, which functions as a PKA-targeting protein as well as a guanine nucleotide exchange factor (GEF) for RhoA. We demonstrated that AKAP-Lbc Rho-GEF activity is stimulated by the alpha subunit of the heterotrimeric G protein G12. Here, we identified 14-3-3 as a novel regulatory protein interacting with AKAP-Lbc. Elevation of the cellular concentration of cAMP activates the PKA holoenzyme anchored to AKAP-Lbc, which phosphorylates the anchoring protein on the serine 1565. This phosphorylation event induces the recruitment of 14-3-3, which inhibits the Rho-GEF activity of AKAP-Lbc. AKAP-Lbc mutants that fail to interact with PKA or with 14-3-3 show a higher basal Rho-GEF activity as compared to the wild-type protein. This suggests that, under basal conditions, 14-3-3 maintains AKAP-Lbc in an inactive state. Therefore, while it is known that AKAP-Lbc activity can be stimulated by Galpha12, in this study we demonstrated that it is inhibited by the anchoring of both PKA and 14-3-3.  相似文献   

20.
Many bacterial phytopathogens employ effectors secreted through the type-III secretion system to suppress plant innate immune responses. The Xanthomonas type-III secreted non-TAL effector protein Xanthomonas outer protein Q (XopQ) exhibits homology to nucleoside hydrolases. Previous work indicated that mutations which affect the biochemical activity of XopQ fail to affect its ability to suppress rice innate immune responses, suggesting that the effector might be acting through some other pathway or mechanism. In this study, we show that XopQ interacts in yeast and in planta with two rice 14-3-3 proteins, Gf14f and Gf14g. A serine to alanine mutation (S65A) of a 14-3-3 interaction motif in XopQ abolishes the ability of XopQ to interact with the two 14-3-3 proteins and to suppress innate immunity. Surprisingly, the S65A mutant gains the ability to interact with a third 14-3-3 protein that is a negative regulator of innate immunity. The XopQS65A mutant is an inducer of rice immune responses and this property is dominant over the wild-type function of XopQ. Taken together, these results suggest that XopQ targets the rice 14-3-3 mediated immune response pathway and that its differential phosphorylation might enable interaction with alternative 14-3-3 proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号