首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in genes regulating cell cycle and apoptosis are considered major culprits for the malignant transformation of cancer cells. Aberrant activation of the Hedgehog (HH) signaling pathway which primarily regulates genes involved in cell growth, proliferation, survival and apoptosis has been demonstrated in multiple myeloma. Mutations resulting in defective components of the p53 pathway, which serves a critical role in mediating cellular stress response by triggering DNA repair, cell cycle arrest, senescence and apoptosis, have also been identified. This study focuses on detecting copy number variations for the GLIPR1/GLIPR1L1/GLIPR1L2 gene cluster of the p53 pathway and three elements of the HH pathway, SHH, PTCH1 and GLI3 in multiple myeloma (MM) using fluorescence in situ hybridization (FISH). In eighteen samples, there was no evidence of abnormal copy number for PTCH1, GLI3 or SHH. Thus, it is unlikely that copy number variations of these genes are linked to multiple myeloma. However, a deletion of the GLIPR1/GLIPR1L1/ GLIPR1L2 gene cluster, all p53 targets, was found in three of 32 samples (9.4%) indicating that these deleted genes may have significant implications in MM. Further studies should be performed to determine the role of the GLIPR1/GLIPR1L1/GLIPR1L2 gene cluster in the pathogenesis of multiple myeloma.  相似文献   

2.
We identified a novel mouse gene, mRTVP-1, as a p53 target gene using differential display PCR and extensive promoter analysis. The mRTVP-1 protein has 255 amino acids and differs from the human RTVP-1 (hRTVP-1) protein by two short in-frame deletions of two and nine amino acids. RTVP-1 mRNA was induced in multiple cancer cell lines by adenovirus-mediated delivery of p53 and by gamma irradiation or doxorubicin both in the presence and in the absence of endogenous p53. Analysis of RTVP-1 expression in nontransformed and transformed cells further supported p53-independent gene regulation. Using luciferase reporter and electrophoretic mobility shift assays we identified a p53 binding site within intron 1 of the mRTVP-1 gene. Overexpression of mRTVP-1 or hRTVP-1 induced apoptosis in multiple cancer cell lines including prostate cancer cell lines 148-1PA, 178-2BMA, PC-3, TSU-Pr1, and LNCaP, a human lung cancer cell line, H1299, and two isogenic human colon cancer cell lines, HCT116 p53(+/+) and HCT116 p53(-/-), as demonstrated by annexin V positivity, phase-contrast microscopy, and in selected cases 4',6'-diamidino-2-phenylindole staining and DNA fragmentation. Deletion of the signal peptide from the N terminus of RTVP-1 reduced its apoptotic activities, suggesting that a secreted and soluble form of RTVP-1 may mediate, in part, its proapoptotic activities.  相似文献   

3.
4.
Summary In recent times, new members of the insulin/relaxin peptide superfamily have been identified by both differential cloning strategies as well as bioinformatic searching of the EST databases. We have used the public and Celera Genomics databases to search for novel members of this peptide family. No new members of the insulin/relaxin family were identified although the human (H3) and mouse (M3) relaxin 3 genes that we recently discovered in the Celera Genomics database were identified in the public database. We were able to confirm that there are no mouse equivalents of human INSL-4 or human gene 1 relaxin. Hence, as the two human relaxin genes (H1 and H2) are localized together with INSL6 and INSL4 on chromosome 9 it is probable that INSL4 and H1 relaxin are the result of a gene duplication which did not occur in non-primates. The discovery of a full relaxin 3 sequences in a new Zebrafish brain EST library, which retains a high homology in both A and B chain peptide sequence with the H3 peptide, indicate that this novel peptide has important conserved functions.  相似文献   

5.
The apoptosis stimulating p53 proteins, ASPP1 and ASPP2, are the first two common activators of the p53 protein family that selectively enable the latter to regulate specific apoptotic target genes, which facilitates yes yet unknown mechanisms for discrimination between cell cycle arrest and apoptosis. To better understand the interplay between ASPP- and p53-family of proteins we investigated the molecular interactions between them using biochemical methods and structure-based homology modelling. The data demonstrate that: (i) the binding of ASPP1 and ASPP2 to p53, p63 and p73 is direct; (ii) the C-termini of ASPP1 and ASPP2 interact with the DNA-binding domains of p53 protein family with dissociation constants, Kd, in the lower micro-molar range; (iii) the stoichiometry of binding is 1:1; (iv) the DNA-binding domains of p53 family members are sufficient for these protein–protein interactions; (v) EMSA titrations revealed that while tri-complex formation between ASPPs, p53 family of proteins and PUMA/Bax is mutually exclusive, ASPP2 (but not ASPP1) formed a complex with PUMA (but not Bax) and displaced p53 and p73. The structure-based homology modelling revealed subtle differences between ASPP2 and ASPP1 and together with the experimental data provide novel mechanistic insights.  相似文献   

6.
7.
8.
9.
10.
In recent times, new members of the insulin/relaxin peptidesuperfamily have been identified by both differential cloningstrategies as well as bioinformatic searching of the ESTdatabases. We have used the public and Celera Genomicsdatabases to search for novel members of this peptide family.No new members of the insulin/relaxin family were identifiedalthough the human (H3) and mouse (M3) relaxin 3 genes that werecently discovered in the Celera Genomics database wereidentified in the public database. We were able to confirmthat there are no mouse equivalents of human INSL4 or humangene 1 relaxin. Hence, as the two human relaxin genes (H1 andH2) are localized together with INSL6 and INSL4 on chromosome9 it is probable that INSL4 and H1 relaxin are the result of agene duplication which did not occur in non-primates. Thediscovery of a full relaxin 3 sequences in a new Zebrafishbrain EST library, which retains a high homology in both A andB chain peptide sequence with the H3 peptide, indicate thatthis novel peptide has important conserved functions.  相似文献   

11.
12.
13.
14.
15.
The p53 tumor suppressor regulates expression of genes involved in various stress responses. Upon genotoxic stress, p53 induces target genes regulating cell cycle arrest for survival or apoptosis. Nevertheless, detailed mechanisms of how p53 selectively regulates these opposing outcomes remain unclear. For this study, we investigated p53 regulatory mechanisms exerted by nucleosome assembly protein 1-like 1 (NAP1L1) and NAP1L4, both of which are identified as DGKζ-interacting proteins. Here we demonstrate that, under normal conditions, NAP1L1 knockdown decreases Lys320 acetylation of p53 with attenuated proarrest p21 expression, whereas NAP1L4 knockdown increases Lys320 acetylation with enhanced p21 expression. These conditions lead respectively to facilitation and suppression of cell growth. Under genotoxic stress conditions, NAP1L1 knockdown increases Lys382 acetylation with enhanced proapoptotic Bax levels, thereby facilitating cell death. By contrast, NAP1L4 knockdown decreases Lys382 acetylation with attenuated Bax levels, thereby suppressing apoptosis. These results suggest that NAP1L1 and NAP1L4 regulate cell fate by controlling the expression of p53-responsive proarrest and proapoptotic genes through selective modulation of p53 acetylation at specific sites during normal homeostasis and in stress-induced responses.  相似文献   

16.
17.
18.
Tom1L1 (Tom1-like1) and related proteins Tom1 (Target of Myb1) and Tom1L2 (Tom1-like2) constitute a new protein family characterized by the presence of a VHS (Vps27p/Hrs/Stam) domain in the N-terminal portion followed by a GAT (GGA and Tom) domain. Recently it was demonstrated that the GAT domain of both Tom1 and Tom1L1 binds ubiquitin, suggesting that these proteins might participate in the sorting of ubiquitinated proteins into multivesicular bodies (MVBs). Here we report a novel interaction between Tom1L1 and members of the MVB sorting machinery. Specifically, we found that the VHS domain of Tom1L1 interacts with Hrs (Hepatocyte growth factor-regulated tyrosine kinase substrate), whereas a PTAP motif, located between the VHS and GAT domain of Tom1L1, is responsible for binding to TSG101 (tumor susceptibility gene 101). Myc epitope-tagged Tom1L1 showed a cytosolic distribution but was recruited to endosomes following Hrs expression. In addition, Tom1L1 possesses several tyrosine motifs at the C-terminal region that mediate interactions with members of the Src family kinases and other signaling proteins such as Grb2 and p85. We showed that a fraction of Fyn kinase localizes at endosomes and that this distribution becomes more evident after epidermal growth factor internalization. Moreover, expression of a constitutive active form of Fyn also promoted the recruitment of Tom1L1 to enlarged endosomes. Taken together, we propose that Tom1L1 could act as an intermediary between signaling and degradative pathways.  相似文献   

19.
20.
There are 10 gene families that have members on both human chromosome 6 (6p21.3, the location of the human major histocompatibility complex [MHC]) and human chromosome 9 (mostly 9q33-34). Six of these families also have members on mouse chromosome 17 (the mouse MHC chromosome) and mouse chromosome 2. In addition, four of these families have members on human chromosome 1 (1q21-25 and 1p13), and two of these have members on mouse chromosome 1. One hypothesis to explain these patterns is that members of the 10 gene families of human chromosomes 6 and 9 were duplicated simultaneously as a result of polyploidization or duplication of a chromosome segment ("block duplication"). A subsequent block duplication has been proposed to account for the presence of representatives of four of these families on human chromosome 1. Phylogenetic analyses of the 9 gene families for which data were available decisively rejected the hypothesis of block duplication as an overall explanation of these patterns. Three to five of the genes on human chromosomes 6 and 9 probably duplicated simultaneously early in vertebrate history, prior to the divergence of jawed and jawless vertebrates, and shortly after that, all four of the genes on chromosomes 1 and 9 probably duplicated as a block. However, the other genes duplicated at different times scattered over at least 1.6 billion years. Since the occurrence of these clusters of related genes cannot be explained by block duplication, one alternative explanation is that they cluster together because of shared functional characteristics relating to expression patterns.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号