首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Binding of 7 5 Se to plasma proteins was studied in four cancer patients who received 200–250 μCi of 7 5 SeO32− (1.25 μg of selenium) intravenously for tumor scans. During the hour after injection, the 7 5 Se disappeared rapidly from the plasma. Gel filtration chromatography and dialysis experiments indicated that a large amount of the 7 5 Se returned to the plasma bound to protein between 1 and 6 h after injection. Up to 16% of the plasma 7 5 Se was found in very-low-density lipoproteins and low-density lipoproteins as early as 3 mikn after injection but very little 7 5 Se was found in high density lipoproteins. The very low density lipoprotein 7 5 Se activity declined very rapidly whereas low density lipoprotein 7 5 Se activity fell more slowly. Zonal ultracentrifugal studies of one subject's lipoproteins revealed a continuum of 7 5 Se-binding proteins from the very low density lipoprotein peak to the low density lipoprotein peak. Most of the 7 5 Se could be removed from the lipoproteins by denaturation with 8 M urea or treatment with 0.5 M mercaptoethanol. These treatments removed very little of the 7 5 Se from plasma collected 48 h after injection indicating a different type of binding of selenium in lipoproteins than in other plasma proteins.  相似文献   

2.
Binding of 7 5 Se to plasma proteins was studied in four cancer patients who received 200–250 μCi of 7 5 SeO32? (1.25 μg of selenium) intravenously for tumor scans. During the hour after injection, the 7 5 Se disappeared rapidly from the plasma. Gel filtration chromatography and dialysis experiments indicated that a large amount of the 7 5 Se returned to the plasma bound to protein between 1 and 6 h after injection. Up to 16% of the plasma 7 5 Se was found in very-low-density lipoproteins and low-density lipoproteins as early as 3 mikn after injection but very little 7 5 Se was found in high density lipoproteins. The very low density lipoprotein 7 5 Se activity declined very rapidly whereas low density lipoprotein 7 5 Se activity fell more slowly. Zonal ultracentrifugal studies of one subject's lipoproteins revealed a continuum of 7 5 Se-binding proteins from the very low density lipoprotein peak to the low density lipoprotein peak. Most of the 7 5 Se could be removed from the lipoproteins by denaturation with 8 M urea or treatment with 0.5 M mercaptoethanol. These treatments removed very little of the 7 5 Se from plasma collected 48 h after injection indicating a different type of binding of selenium in lipoproteins than in other plasma proteins.  相似文献   

3.
Studies were undertaken to investigate potential interactions among plasma lipoproteins. Techniques used were low density lipoprotein2 (LDL2)-ligand blotting of plasma lipoproteins separated by nondenaturing 2.5-15% gradient gel electrophoresis, ligand binding of plasma lipoproteins by affinity chromatography with either LDL2 or lipoprotein(a) (Lp(a)) as ligands, and agarose lipoprotein electrophoresis. Ligand blotting showed that LDL2 can bind to Lp(a). When apolipoprotein(a) was removed from Lp(a) by reduction and ultracentrifugation, no interaction between LDL2 and reduced Lp(a) was detected by ligand blotting. Ligand binding showed that LDL2-Sepharose 4B columns bound plasma lipoproteins containing apolipoproteins(a), B, and other apolipoproteins. The Lp(a)-Sepharose column bound lipoproteins containing apolipoprotein B and other apolipoproteins. Furthermore, the Lp(a) ligand column bound more lipoprotein lipid than the LDL2 ligand column, with the Lp(a) ligand column having a greater affinity for triglyceride-rich lipoproteins. Lipoprotein electrophoresis of a mixture of LDL2 and Lp(a) demonstrated a single band with a mobility intermediate between that of LDL2 and Lp(a). Chemical modification of the lysine residues of apolipoprotein B (apoB) by either acetylation or acetoacetylation prevented or diminished the interaction of LDL2 with Lp(a), as shown by both agarose electrophoresis and ligand blotting using modified LDL2. Moreover, removal of the acetoacetyl group from the lysine residues of apoB by hydroxylamine reestablished the interaction of LDL2 with Lp(a). On the other hand, blocking of--SH groups of apoB by iodoacetamide failed to show any effect on the interaction between LDL2 and Lp(a). Based on these observations, it was concluded that Lp(a) interacts with LDL2 and other apoB-containing lipoproteins which are enriched in triglyceride; this interaction is due to the presence of apolipoprotein(a) and involves lysine residues of apoB interacting with the plasminogen-like domains (kringle 4) of apolipoprotein(a). Such results suggest that Lp(a) may be involved in triglyceride-rich lipoprotein metabolism, could form transient associations with apoB-containing lipoproteins in the vascular compartment, and alter the intake by the high affinity apoB, E receptor pathway.  相似文献   

4.
Poly-β-hydroxybutyrate (PHB) is an amphiphilic lipid that has been found to be a ubiquitous component of the cellular membranes of bacteria, plants and animals. The distribution of PHB in human plasma was investigated using chemical and immunological methods. PHB concentrations proved highly variable; in a random group of 24 blood donors, total plasma PHB ranged from 0.60 to 18.2 mg/l, with a mean of 3.5 mg/l. In plasma separated by density gradient ultracentrifugation, lipoproteins carried 20–30% of total plasma PHB; 6–14% in the very low density lipoproteins (VLDL), 8–16% in the low density lipoproteins (LDL), and < 3% in the high density lipoproteins (HDL). The majority of plasma PHB (70–80%) was found in protein fractions of density > 1.22 g/ml. Western blot analysis of the high density fractions with anti-PHB F(ab')2 identified albumin as the major PHB-binding protein. The affinity of albumin for PHB was confirmed by in vitro studies which demonstrated transfer of 14C-PHB from chloroform into aqueous solutions of human and bovine serum albumins. PHB was less tightly bound to LDL than to other plasma components; the polymer could be isolated from LDL by extraction with chloroform, or by digestion with alkaline hypochlorite, but it could not similarly be recovered from VLDL or albumin. PHB in the LDL correlated positively with total plasma cholesterol and LDL cholesterol, and negatively with HDL cholesterol. The wide concentration range of PHB in plasma, its presence in VLDL and LDL and absence in HDL, coupled with its physical properties, suggest it may have important physiological effects.  相似文献   

5.
The binding of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine, a platelet activating factor (PAF), to plasma components was studied. Gel filtration and lipoprotein fractionation revealed the presence in the plasma of PAF-binding fractions corresponding to plasma albumin as well as of low and high density lipoproteins. Incubation of PAF-containing lipoproteins with rabbit platelets resulted in a transfer of PAF to the platelets. PAF bound to plasma albumin is less exchangeable than PAF bound to lipoproteins. The PAF-transferring efficiency of high density lipoproteins (HDL) and of low density lipoproteins (LDL) correlates with the amounts of HDL- and LDL-receptors on the platelet surface. It may thus be assumed that PAF released by various cells interacts with lipoproteins which further transport the bound PAF to target cells carrying lipoprotein receptors.  相似文献   

6.
alpha-tocopherol, the most potent antioxidant form of vitamin E, is mainly bound to lipoproteins in plasma and its incorporation into the vascular wall can prevent the endothelium dysfunction at an early stage of atherogenesis. In the present study, the plasma phospholipid transfer protein (PLTP) was shown to promote the net mass transfer of alpha-tocopherol from high density lipoproteins (HDL) and alpha-tocopherol-albumin complexes toward alpha-tocopherol-depleted, oxidized low density lipoproteins (LDL). The facilitated transfer reaction of alpha-tocopherol could be blocked by specific anti-PLTP antibodies. These observations indicate that PLTP may restore the antioxidant potential of plasma LDL at an early stage of the oxidation cascade that subsequently leads to cellular damages. In addition, the present study demonstrated that the PLTP-mediated net mass transfer of alpha-tocopherol can constitute a new mechanism for the incorporation of alpha-tocopherol into the vascular wall in addition to the previously recognized LDL receptor and lipoprotein lipase pathways. In ex vivo studies on rabbit aortic segments, the impairment of the endothelium-dependent arterial relaxation induced by oxidized LDL was found to be counteracted by a pretreatment with purified PLTP and alpha-tocopherol-albumin complexes, and both the maximal response and the sensitivity to acetylcholine were significantly improved. We conclude that PLTP, by supplying oxidized LDL and endothelial cells with alpha-tocopherol through a net mass transfer reaction may play at least two distinct beneficial roles in preventing endothelium damage, i.e., the antioxidant protection of LDL and the preservation of a normal relaxing function of vascular endothelial cells.  相似文献   

7.
Discrete apolipoprotein E-containing lipoproteins can be identified when EDTA plasma is fractionated on columns of 4% agarose. The present study has demonstrated, by physical and metabolic criteria, that these apolipoprotein E-containing lipoprotein subclasses may be further isolated by immunoaffinity chromatography. Whole plasma was first bound to an anti-apolipoprotein E immunoadsorbent prior to gel filtration on 4% agarose. After elution from the affinity column and dialysis, the bound fraction was chromatographed on 4% agarose. Discrete subfractions of apolipoprotein E could be demonstrated within elution volumes similar to those observed in the original plasma. When whole plasma was first submitted to gel filtration and the apolipoprotein E-containing lipoproteins of either intermediate- or of high-density lipoprotein (HDL) size were subsequently bound to anti-apolipoprotein E columns, the bound eluted fractions maintained their size and physical properties as shown by electron microscopy and by rechromatography on columns of 4% agarose. The metabolic integrity of apolipoprotein E-containing very-low-density lipoproteins (VLDL) was examined by coinjection into a cynomolgus monkey of 125I-labeled apolipoprotein E-rich and 131I-labeled apolipoprotein E-deficient human VLDL which had been separated by immunoaffinity chromatography. The plasma specific activity time curves of the apolipoprotein B in VLDL, intermediate-density (IDL) and low-density (LDL) lipoproteins demonstrated rates of decay and precursor-product relationships similar to those obtained after injection of whole labeled VLDL, supporting the metabolic integrity of VLDL isolated by immunoaffinity chromatography.  相似文献   

8.
Selenocysteine-containing proteins from rat and monkey plasma   总被引:1,自引:0,他引:1  
This investigation was carried out to determine whether a selenium-containing plasma protein in rat and monkey (Macaca mulata) plasma might be involved in selenium transport. Injection of [75Se]selenite or [75Se]selenomethionine was used to label a plasma protein. The native molecular weight of the protein from rat and monkey plasma was determined by gel filtration to be about 80 000. The molecular weight of a selenium-containing polypeptide prepared from the protein was about 45 000, as determined by gel filtration in the presence of sodium dodecyl sulfate. Selenium was attached to both the rat and monkey plasma protein in the form of the amino acid selenocysteine. The proportion of plasma selenium normally bound to the rat protein in vivo was less than 5%, and the half-life of selenium bound to the protein was a few hours. These findings are consistent with a selenium-transport function for this protein.  相似文献   

9.
Modifications of existing methods have allowed for the isolation and purification of various species of plasma glycosaminoglycans on the basis of their sulfate content and molecular size. All of the preparations precipitated human plasma low density lipoproteins (LDL); maximal precipitation occurred with amounts of glycans corresponding to 50 mug of hexuronate and 12 mg of LDL. The interaction of glycans with pyrene-labeled lipoproteins was also studied, measuring variations of the fluorescence emitted by the monomer (M) and excimer (E) species of the bound pyrene. The ratio IE/IM is proportional to c/eta, where c is the microscopic concentration of the pyrene confined to the hydrocarbon region of the lipoprotein and eta is the microviscosity of that region. To 0.12 mg of pyrene-labeled LDL, very low density lipoproteins (VLDL) or high density lipoproteins (HDL) were added increasing amounts of the various glycan preparations. The sulfate-rich species decreased the IE/IM ratio of LDL and HDL but not that of VLDL. This finding suggests that the glycan caused a change in lipoprotein conformation associated with either an increased volume or increased microscopic viscosity of the hydrocarbon region. The modification of LDL conformation could be prevented by proteolytic treatment of the sulfate-rich species or by addition to the system of suitable amounts of sulfate-poor species or of chrondroitin-4-sulfate, but could not be prevented by increased ionic concentration. These results suggest that the two main species of plasma glycans are important in maintaining adequate rheological properties of plasma lipoproteins.  相似文献   

10.
The structure of apolipoprotein B and its stoichiometry on plasma lipoproteins has been a major issue and one refractory to a variety of analyses. Immunochemical analyses represent an independent approach. Examinations of apolipoprotein B (apo-B) epitopes on human plasma low density lipoproteins (LDL) using monoclonal antibodies have consistently revealed the existence of extensive apo-B heterogeneity. In the present study, we have addressed the solution of the stoichiometry problem using quantitative analysis of the maximum number of identical antibodies that can be bound per LDL particle in which we take into account this ligand heterogeneity. We have estimated the molecular weight of apo-B by quantifying the number of times a given apo-B epitope is expressed on the surface of LDL. The quantitative binding of eight previously characterized monoclonal antibodies was measured in a fluid phase radioimmunoassay. The results were analyzed by Scatchard analysis and expressed on the basis of independent measurements of the maximum amount of LDL that could be bound by each antibody. Affinity constants for each of the eight antibodies varied between 8.5 X 10(7) and 80 X 10(7) M-1. For these same antibodies, the concentration of maximally bound antibody at a normalized LDL concentration of 1000 ng/ml was estimated to be 0.9-1.8 nM with a mean of 1.23 nM. Adopting a molecular mass from physicochemical analysis for LDL apo-B of 550,000 daltons, the molar ratio between bound antibody and LDL varied between 0.5 and 1.2 (mean 0.75 +/- 0.15). The results supported the hypothesis that apo-B is present as a single large molecular weight polypeptide in LDL.  相似文献   

11.
R B Shireman  J F Remsen 《Life sciences》1983,33(22):2165-2171
It has been proposed that in vivo variability in response to certain hydrophobic chemicals or drugs, such as imipramine, may be due in part to the varying plasma lipid levels in patients. The distribution of [3H]imipramine into the lipoproteins of human plasma was therefore studied. Differential density centrifugation of plasma containing [3H]imipramine resulted in flotation of very low density, low density and high density lipoproteins (VLDL, LDL, HDL) and approximately one-third of the total 3H radioactivity. Twelve percent of the radioactivity was present in the sedimented fraction which included most of the plasma proteins. There appeared to be little specific binding of [3H]imipramine to VLDL or LDL, as shown by ultracentrifugation, dialysis and column chromatography. [3H]Imipramine was readily incorporated into cultured human fibroblasts;o no differences were observed in cellular uptake whether it was added to the medium in plasma, LDL or HDL. Also, no differences in uptake of [3H]imipramine by LDL-receptor positive and receptor negative cells were noted. These experiments indicate that LDL is not a major vehicle for the transport of this drug and that both the bound and free fractions are available for cellular uptake.  相似文献   

12.
On the basis of the fact that selenium from selenite binds to hemoglobin (Hb), we investigated the missing process in the selenium export from red blood cells (RBCs), i.e., the transfer of selenium bound to Hb to RBC membrane proteins. To elucidate the molecular events of the Hb-associated selenium export from RBC, a Hb–Se complex was synthesized from thiol-exchange of Cys-β93 in Hb with penicillamine-substituted glutathione selenotrisulfide, as a model of major metabolic intermediates, and then interactions between the Hb–Se complex and RBC inside-out vesicles (IOVs) were examined. Selenium bound to Hb was transferred to the IOV membrane on the basis of the intrinsic interactions between Hb and the cytoplasmic domains of band 3 protein (CDB3). The observed selenium transfer was inhibited by the pretreatments of IOVs with iodoacetamide and the α-chymotrypsin digestion, indicating that the Hb mediates the selenium transfer to the thiol groups of CDB3. In addition, it was found that deoxygenated Hb, with a high binding affinity for CDB3, more favorably transferred selenium to the IOV membranes than oxygenated Hb, with a low affinity. When selenium export from RBC to the plasma was examined by continuously introducing nitrogen gas, the selenium export rate was promoted with an increase in the rate of deoxygenated Hb. Overall, these data suggested that Hb could possibly play a role in the selenium export from RBC treated with selenite in an oxygen-linked fashion. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Tritiated 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) added to human plasma in vitro associated with the plasma lipoproteins. The effects of plasma and lipoproteins on cellular uptake of dioxin were studied using normal human skin fibroblasts and mutant fibroblasts from a patient with homozygous familial hypercholesterolemia. The latter cells lack the normal cell membrane receptor for low density lipoprotein (LDL). The time- and temperature-dependent cellular uptake of [3H]dioxin was greatest from LDL, intermediate from high density lipoprotein (HDL) and least from serum. A significantly greater uptake from LDL by the normal cells compared to the mutant cells indicated the involvement of the LDL receptor-mediated pathway. Concentration-dependent studies indicated that the cellular uptake at 37 degrees C of [3H]dioxin varied linearly with dioxin concentration at constant LDL concentration. Thin-layer chromatography (TLC) showed that conversion to more polar compounds may have occurred after 24-h incubation with cells. [3H]Dioxin could be removed from cells efficiently by incubation with 20% serum greater than HDL greater than LDL. Since the vehicle of delivery may influence subsequent location and metabolism of this compound in cells, it is concluded that the physiologic vehicles (either serum- or LDL-associated dioxin), rather than organic solvents, should be used in experiments with cultured cells or perfused organs.  相似文献   

14.
The subcellular distribution of selenium in rat tissues was studied by measuring 75Se in animals provided for 5 months with [75Se]selenite as the main dietary source of selenium. Equilibration of the animals to a constant specific activity allowed the measurement of 75Se to be used as a specific elemental assay for selenium. Of the whole-body selenium, 51% was in the soluble fractions and 48% was bound to the particulate fractions as follows: 21% in plasma membranes, 11% in microsomes, and 16% in mitochondria. Glutathione peroxidase was primarily a soluble enzyme, but part of the activity was associated with plasma membrane in liver, mitochondria in liver and kidney, and microsomes in testes. Selenium in glutathione peroxidase accounted for about one-third of the particulate-associated selenium. These results indicate that other selenium-containing proteins besides glutathione peroxidase are present in membranes.  相似文献   

15.
We characterized the lipoproteins produced by perfused rat liver in recirculating and non-recirculating systems. The apolipoprotein (apo) B of the perfusate very low density lipoprotein (VLDL) and low density lipoprotein (LDL) were labeled with a radioactive precursor amino acid in both systems, suggesting that newly synthesized apo B was secreted in association with VLDL and LDL. When the lipoproteins obtained from the non-recirculating perfusate were injected into rats in vivo, the half life of the VLDL was 13 min and most of it was converted to LDL, while that of the LDL was 5.2 h, indicating that the perfusate LDL was different from the VLDL with respect to its metabolic fate. These observations suggest that both VLDL and LDL are produced as independent primary products in the liver, although the majority of LDL is derived from VLDL in vivo. The nascent lipoproteins in the non-recirculating perfusate were richer in apo E than those in the recirculating perfusate, and a part of the apo E disappeared when the VLDL was added to the recirculating perfusate. The particle sizes of the VLDL and LDL were examined by electron microscopy, which revealed that those in the non-recirculating perfusate were more homogeneous and smaller than the plasma counterparts, while those in the recirculating perfusate were more heterogeneous and their mean diameter was closer to that of the plasma lipoproteins, than in the case of non-recirculating perfusate. These observations suggest that apo E secreted with the nascent lipoproteins may be picked up by the liver just after secretion, causing the heterogeneity in size, as observed in the case of plasma lipoproteins.  相似文献   

16.
Pownall HJ 《Biochemistry》2006,45(38):11514-11522
Cellular cholesterol efflux is an early, obligatory step in reverse cholesterol transport, the putative antiatherogenic mechanism by which human plasma high-density lipoproteins (HDL) transport cholesterol from peripheral tissue to the liver for recycling or disposal. HDL-phospholipid content is the essential cholesterol-binding component of lipoproteins and therefore a major determinant of cholesterol efflux. Thus, increased phospholipidation of lipoproteins, particularly HDL, is one strategy for increasing cholesterol efflux. This study validates a simple, new detergent perturbation method for the phospholipidation of plasma lipoproteins; we have quantified the cholesterophilicity of human plasma lipoproteins and the effects of lipoprotein phospholipidation on cholesterophilicity and cellular cholesterol efflux mediated by the class B type I scavenger receptor (SR-BI). We determined that low-density lipoproteins (LDL) are more cholesterophilic than HDL and that LDL has a higher affinity for phospholipids than HDL whereas HDL has a higher phospholipid capacity than LDL. Phospholipidation of total human plasma lipoproteins enhances cholesterol efflux, an effect that occurs largely through the preferential phospholipidation of HDL. We conclude that increasing HDL phospholipid increases its cholesterophilicity, thereby making it a better acceptor of cellular cholesterol efflux. Phospholipidation of lipoproteins by detergent perturbation is a simple way to increase HDL cholesterophilicity and cholesterol efflux in a way that may be clinically useful.  相似文献   

17.
The attempt was performed to isolate desialylated low density lipoproteins (LDL) from the blood of healthy subjects and patients with coronary heart disease by affinity chromatography with immobilized agglutinin of Ricinus communis, a lectin that interacts specifically with galactose residues. A part of LDL was bound to sorbent and could be replaced by galactose but not other saccharide constituents of the LDL molecule. Bound LDL subfraction had a 2-3-fold lower content of desialylated LDL in CAD patients was about 3-fold higher than in healthy subjects. Desialylated LDL induced a 2- to 4-fold increase of total cholesterol content in cultured human aortic intimal cells, whereas unbound LDL had no effect on intracellular cholesterol level. It is assumed that the subfraction of desialylated LDL may be responsible for the atherogenic properties of LDL in CAD patients.  相似文献   

18.
Selenoprotein P protects low-density lipoprotein against oxidation   总被引:4,自引:0,他引:4  
Selenoprotein P (SeP) is an extracellular glycoprotein with 8-10 selenocysteines per molecule, containing approximately 50% of total selenium in human serum. An antioxidant function of SeP has been postulated. In the present study, we show that SeP protects low-density lipoproteins (LDL) against oxidation in a cell-free in-vitro system. LDL were isolated from human blood plasma and oxidized with CuCl2, 2,2'-azobis(2-amidinopropane) (AAPH) or peroxynitrite in the presence or absence of SeP, using the formation of conjugated dienes as parameter for lipid peroxidation. SeP delayed the CuCl2- and AAPH-induced LDL oxidation significantly and more efficiently than bovine serum albumin used as control. In contrast, SeP was not capable of inhibiting peroxynitrite-induced LDL oxidation. The protection of LDL against CuCl2- and AAPH-induced oxidation provides evidence for the antioxidant capacity of SeP. Because SeP associates with endothelial membranes, it may act in vivo as a protective factor inhibiting the oxidation of LDL by reactive oxygen species.  相似文献   

19.
A few alternatives of the binding of healthy patients plasma low density lipoproteins (LDL) with anion exchanger PBE-94 were revealed. In the first case the main part of LDL did not bind to the gel and the isoelectric points of the minor subfractions were 5.8 and 5.3, and pI 4.1. In the second case about half of lipoproteins did not bind to the gel, and the isoelectric points of subfractions were 5.7 and 5.0; and pI 4.1. In the third case when all lipoproteins bound to the PBE-94, there were much more subfractions and their isoelectric points were 6.2, 5.8, 5.2, 4.9, 4.5 and pI 4.1. All LDL of the patients with ischemic heart disease bound to anion exchanger, and the part of subfraction with pI 4.1 was three or five times as great as the one of the healthy person. Increasing of the LDL subfraction with pI 4.1 was observed at prolonged keeping of the LDL obtained from the healthy person plasma. LDL isoelectric point distribution of the persons with carcinoma uterine cervix did not differ from the one of the healthy persons. Acetylation and hexanol modification resulted in the isoelectric point shift from 5.7 to 4.6 and to 4.3 in the case of LDL subfraction to be obtained preparatively using the chromatofocusing.  相似文献   

20.
Morphological characteristics of the interaction of low density lipoproteins (LDL) and acetylated low density lipoproteins (AcLDL) with rat liver cells are described. These liver cell types are mainly responsible for the catabolism of these lipoproteins in vivo. Isolated rat liver Kupffer, endothelial, and parenchymal cells were incubated with LDL or AcLDL conjugated to 20 nm colloidal gold. LDL was mainly internalized by Kupffer cells, whereas AcLDL was predominantly found in endothelial cells. Kupffer and endothelial cells displayed different morphological characteristics in the processing of these lipoproteins. Kupffer cells bound LDL at uncoated regions of the plasma membrane often at the base of pseudopodia, and internalized the particles via small smooth vesicles. These uptake characteristics differ from the classical LDL uptake pathway, as described for other cell types, and may be related to the unique recognition properties of the receptor of Kupffer cells as observed in biochemical studies. Liver endothelial cells bound AcLDL in coated pits, followed by rapid uptake. Uptake proceeded through small coated vesicles, and after 5 min of incubation large (600-1200 nm) electron-lucent vacuoles (endosomes) with AcLDL-gold particles arranged along the membrane region were present. The endosomes were often associated closely with the cell membrane which might enable direct recycling of AcLDL receptors. These observations might explain the high efficiency of these cells in the processing of modified LDL in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号