首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of various concentrations of deoxyglucose (DG) on the aerobic metabolism of glucose in glucose-grown repressed Saccharomyces cerevisiae cells were studied at 30 degrees C in a standard pyrophosphate medium containing 4.5 10(7) cells/ml. 31P-nuclear magnetic resonance (NMR) spectroscopy was used to monitor DG phosphorylation and the formation of polyphosphates. The production of soluble metabolites of glucose was evaluated by 13C- and 1H-NMR and biochemical techniques. The cells were aerobically incubated with 25 mM of glucose and various concentrations of DG (0, 5 and 10 mM) in order to determine the DG concentration leading to optimum of 2-deoxy-D-glucose 6-phosphate (DG6P) formation without over-inhibiting the synthesis of other metabolites. The production of DG6P increased by about 25% when the external DG concentration was doubled (from 5 to 10 mM). The formation of polyphosphates (polyP), on the other hand, was found to be mainly conditioned by the DG concentration. The amount of polyP decreased by a factor of four upon addition of 5 mM DG and became undetectable in the presence of 10 mM DG. The glucose consumption and the production of soluble metabolites of [1-13C]glucose were then evaluated as a function of time in both the absence and presence of 5 mM DG. The effect of DG is to decrease the glucose consumption and the formation of polyphosphates, ethanol, glycerol, trehalose, glutamate, aspartate and succinate while stimulating the formation of arginine and citrate. Upon co-addition of 25 mM glucose and 5 mM DG, the ratio between the initial rates of glucose consumption (0.16 mM/min) and DG6P production (0.027 mM/min) is about (5.9 +/- 1.2), not very different from the ratio of the initial concentration of glucose and DG (= 5.0). Therefore, hexokinase can phosphorylate deoxyglucose as well as glucose. However, after 100 min of incubation, the glucose concentration in the external medium decreased by about 64% while only 10% of DG was phosphorylated. DG6P was formed and quickly reached the limiting value about 30 min after co-addition of glucose and DG. Nevertheless, when the maximum quantity of DG6P was obtained, the DG consumption became negligible. By contrast, the glucose consumption and the production of ethanol and glycerol, although substantially reduced by about 42%, varied linearly with time up to 80 min of incubation. Thus even in the presence of an excess of DG, glycolysis is only slowed but not gradually or completely inhibited by DG.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The effects of various concentrations of deoxyglucose (DG) on the aerobic metabolism of glucose in glucose-grown repressed Saccharomyces cerevisiae cells were studied at 30°C in a standard pyrophosphate medium containing 4.5 107 cells/ml. 31P-nuclear magnetic resonance (NMR) spectroscopy was used to monitor DG phosphorylation and the formation of polyphosphates. The production of soluble metabolites of glucose was evaluated by 13C- and 1H-NMR and biochemical techniques. The cells were aerobically incubated with 25 mM of glucose and various concentrations of DG (0, 5 and 10 mM) in order to determine the DG concentration leading to optimum of 2-deoxy-d-glucose 6-phosphate (DG6P) formation without over-inhibiting the synthesis of other metabolites. The production of DG6P increased by about 25% when the external DG concentration was doubled (from 5 to 10 mM). The formation of polyphosphates (polyP), on the other hand, was found to be mainly conditioned by the DG concentration. The amount of polyP decreased by a factor of four upon addition of 5 mM DG and became undetectable in the presence of 10 mM DG. The glucose consumption and the production of soluble metabolites of [1-13C]glucose were then evaluated as a function of time in both the absence and presence of 5 mM DG. The effect of DG is to decrease the glucose consumption and the formation of polyphosphates, ethanol, glycerol, trehalose, glutamate, aspartate and succinate while stimulating the formation of arginine and citrate. Upon co-addition of 25 mM glucose and 5 mM DG, the ratio between the initial rates of glucose consumption (0.16 mM/min) and DG6P production (0.027 mM/min) is about (5.9 ± 1.2), not very different from the ratio of the initial concentration of glucose and DG (= 5.0). Therefore, hexokinase can phosphorylate deoxyglucose as well as glucose. However, after 100 min of incubation, the glucose concentration in the external medium decreased by about 64% while only 10% of DG was phosphorylated. DG6P was formed and quickly reached the limiting value about 30 min after co-addition of glucose and DG. Nevertheless, when the maximum quantity of DG6P was obtained, the DG consumption became negligible. By contrast, the glucose consumption and the production of ethanol and glycerol, although substantially reduced by about 42%, varied linearly with time up to 80 min of incubation. Thus even in the presence of an excess of DG, glycolysis is only slowed but not gradually or completely inhibited by DG. The reasons why DG6P cannot accumulate indefinitely in cells are discussed, together with the reasons why the consumption of DG, but not glucose, becomes negligible after 30 min of incubation. In the absence of DG, the amount of polyphosphates (polyP) increased regularly with time as long as glucose was sufficiently present (≥ 5 mM) in the suspension. When glucose was exhausted, long chain polyphosphates disappeared to give rise, at first, to polyP with shorter chains and finally to inorganic phosphate. In the presence of 5 mM DG, the reduction in quantity of polyP can be explained by the fact that ATP, normally used for the polyP synthesis, is now diverted to phosphorylation of DG to DG6P. The presence of 5 mM DG also had significant effects on the glutamate C2, C3 and C4 signal intensity and the production of all aminoacids. The results seem to indicate that the enzymes involved in the Krebs cycle are also affected by the presence of DG.  相似文献   

3.
Type I hexokinase (ATP:D-hexose 6-phospotransferase, EC 2.7.1.1) of porcine heart exists in two chromatographically distinct forms. These do not differ significantly in size, electrophoretic mobility at pH 8.6 or kinetic properties. Both forms obey a sequential mechanism and are potently inhibited by glucose 6-phosphate. In contrast to observations of type I hexokinase from brain, inhibition by glucose 6-phosphate is not relieved by inorganic phosphate. Under most conditions, low concentrations of phosphate (less than 10 mM) have little effect on the kinetic behaviour of the enzyme but at higher concentrations this ligand is an inhibitor. Mannose 6-phosphate inhibits in a manner analogous to glucose 6-phosphate but the Ki is much greater. In view of the similarity of the kinetic parameters governing phosphorylation of mannose and glucose, this difference in affinity for the inhibitor site is seen as consistent with the existence of a separate regulatory site on the enzyme. MgADP inhibits hexokinase but behaves as a normal product inhibitor and inhibition is competitive with respect to MgATP and non-competitive with respect to glucose.  相似文献   

4.
Enzymatic assays for 2-deoxyglucose and 2-deoxyglucose 6-phosphate   总被引:4,自引:0,他引:4  
Methods for 2-deoxyglucose (2-DG) and 2-deoxyglucose 6-phosphate (DG6P) are described which are based on the fact that DG6P is oxidized by glucose-6-phosphate dehydrogenase (G6PDH), but at a rate 1000-fold slower than for glucose 6-phosphate, whereas hexokinase phosphorylates 2DG and glucose at comparable rates. Therefore, by adding the two enzymes in a suitable order, and in appropriate concentrations, 2DG, glucose, DG6P, and glucose 6-P can all be separately measured. To avoid a side reaction from the use of a high level of G6PDH, when measuring DG6P, glucose is first removed with glucose oxidase plus aldose reductase.  相似文献   

5.
A type C hexokinase (ATP:D-hexose-6-phosphotransferase EC 2.7.1.1) was partially purified from the liver of the frog Calyptocephalella caudiverbera. The enzyme is inhibited by glucose levels in the range of normal blood sugar concentrations. The extent of the inhibition by glucose depends on the concentration of ATP, being most marked between 1 and 5 mM ATP. Fructose, although a substrate, was not inhibitory of its own phosphorylation. The inhibitory effect of high glucose levels exhibited a strong, reversible pH dependence being most marked at pH 6.5. At pH 7.5 the inhibition by high glucose levels was a function of the enzyme concentration, the effect being stronger at high enzyme concentrations, whereas no inhibition was observed when assaying very diluted preparations. At all enzyme concentrations studied, high levels of glucose caused no inhibition at pH 8.5, whereas at pH 6.5 strong inhibition was always observed. Short times of photooxidation of hexokinase C as well as incubation with low concentrations of p-chloromercuribenzoate resulted in the loss of the inhibition by excess of glucose. Glucose-6-phosphate was found to be a strong inhibitor of hexokinase C but only at high glucose levels. The inhibitory effect of glucose-6-P follows sigmoidal kinetics at low (about 0.02 mM) glucose concentrations, the Hill coefficient being 2.3. The kinetics of the inhibition became hyperbolic at high (greater than 0.2 mM) glucose levels. These results suggest that the inhibition of hexokinase C by excess glucose is due to the interaction of glucose with a second, aldose-specific, regulatory site on the enzyme. The modification of the inhibitory effect by ATP, glucose-6-P, enzyme concentration, and pH, all of them at physiological levels, indicates a major role for hexokinase C in the regulation of glucose utilization by the liver.  相似文献   

6.
The accumulation of 2-deoxy-D-glucose-6-phosphate (2DG6P), detected using 31P NMR spectroscopy, has been used as a measure of the rate of glucose uptake, yet the accuracy of this measurement has not been verified. In this study, isolated rat hearts were perfused with different substrates or isoproterenol for 30 min before measurement of either 2DG6P accumulation or [2-3H]glucose uptake, without and with insulin. Basal contractile function and metabolite concentrations were the same for all hearts. The basal rates of 2DG6P accumulation differed significantly, depending on the preceding perfusion protocol, and were 38-60% of the [2-3H]glucose uptake rates, whereas insulin-stimulated 2DG6P accumulation was the same or 71% higher than the [2-3H]glucose uptake rates. Therefore the ratio of 2DG6P accumulation/[2-3H]glucose uptake rates varied from 0.38 to 1.71, depending on the prior perfusion conditions or the presence of insulin. The rates of 2DG6P hydrolysis were found to be proportional to the intracellular 2DG6P concentrations, with a K(m) of 17.5mM and V(max) of 1.4 micromol/g dry weight/min. We conclude that the rates of 2DG6P accumulation do not accurately reflect glucose uptake rates under all physiological conditions in the isolated heart and should be used with caution.  相似文献   

7.
Ischemia is reported to stimulate glucose uptake, but the signaling pathways involved are poorly understood. Modulation of glucose transport could be important for the cardioprotective effects of brief intermittent periods of ischemia and reperfusion, termed ischemic preconditioning. Previous work indicates that preconditioning reduces production of acid and lactate during subsequent sustained ischemia, consistent with decreased glucose utilization. However, there are also data that preconditioning enhances glucose uptake. The present study examines whether preconditioning alters glucose transport and whether this is mediated by either phosphatidylinositol 3-kinase (PI3K) or p38 MAP kinase. Langendorff-perfused rat hearts were preconditioned with 4 cycles of 5 min of ischemia and 5 min of reperfusion, with glucose as substrate. During the last reflow, glucose was replaced with 5 mM acetate and 5 mM 2-deoxyglucose (2DG), and hexose transport was measured from the rate of production of 2-deoxyglucose 6-phosphate (2DG6P), using (31)P nuclear magnetic resonance. Preconditioning stimulated 2DG uptake; after 15 min of perfusion with 2DG, 2DG6P levels were 165% of initial ATP in preconditioned hearts compared with 96% in control hearts (p < 0.05). Wortmannin, an inhibitor of PI3K, did not block the preconditioning induced stimulation of 2DG6P production, but perfusion with SB202190, an inhibitor of p38 MAP kinase, did attenuate 2DG6P accumulation (111% of initial ATP, p < 0. 05 compared with preconditioned hearts). SB202190 had no effect on 2DG6P accumulation in nonpreconditioned hearts. Preconditioning stimulation of translocation of GLUT4 to the plasma membrane was not inhibited by wortmannin. The data demonstrate that ischemic preconditioning increases hexose transport and that this is mediated by p38 MAP kinase and is PI3K-independent.  相似文献   

8.
A well known glucose antimetabolite, 2-deoxy glucose (2DG) widely used in chemotherapy of cancer along with radiation, was evaluated as an antifilarial agent by nuclear magnetic resonance. The uptake and metabolism of 2DG in the experimental filarial infection Acanthocheilonema viteae was studied by in vivo multinuclear NMR. An unusually long retention time of 2DG6P within these parasites was observed on continuous 31P NMR monitoring, along with a decrease in ATP levels. These results led to therapeutic investigation in A. viteae infected host Mastomys coucha. 2DG showed a remarkable adulticidal activity (73.6%) with 50% sterilization of surviving female worms at a dose of 250 mg/kg x 5, p.o. NMR observations and activity profile substantiate the findings of one another, directed towards the hitting of bioenergetic machinery of A. viteae by macrofilaricidal agent (2DG).  相似文献   

9.
In the presence of hexokinase, vesicles derived from the sarcoplasmic reticulum of skeletal muscle are able to accumulate Ca2+ in a medium containing ADP and glucose 6-phosphate. No significant Ca2+ uptake is observed if one of these components is omitted from the assay medium. Due to its high affinity for ATP, the Ca(2+)-ATPase can use the very low concentrations of ATP formed from glucose 6-phosphate and ADP to form a Ca2+ gradient. This finding indicates that glucose 6-phosphate and hexokinase can be used as an ATP-regenerating system. The Ca2+ uptake supported by glucose 6-phosphate and ADP is inhibited by glucose and D-xylose. Half-maximal inhibition is observed in the presence of 0.4 mM glucose and 100 mM D-xylose. The transport ratio (Ca2+ transported:substrate utilized) is the same for glucose 6-phosphate and ATP. The Ca2+ gradient formed when glucose 6-phosphate and ADP are the substrates can be used to synthesize ATP from ADP and Pi. The concentration of ATP formed after reversal of the Ca2+ pump is much higher than that expected from direct equilibration of the reaction between glucose 6-phosphate and ADP.  相似文献   

10.
A study of the reverse reaction of rat brain hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) has been performed using a photometric method based on a mutarotase-glucose oxidase-peroxidase-chromogen system to trap and visualize glucose, plus a glycerol kinase-glycerol system to trap ATP. Glucose 6-phosphate or 2-deoxyglucose 6-phosphate were used as phosphoryl donors at different concentrations of ADP. Variation of glucose 6-phosphate concentrations resulted in a biphasic curve from which apparent Km and Ki values of ca. 0.2 mM were calculated. In contrast, variation of 2-deoxyglucose 6-phosphate concentrations resulted in Michaelian kinetics with an apparent Km of 2 mM. The Km value for MgADP was 16 mM irrespective of the nature and concentration of the hexose 6-phosphate substrate. These results are fully consistent with an allosteric site for glucose 6-phosphate as an explanation for the inhibition of animal hexokinases by glucose 6-P and further indicate that the maximal rate is the parameter affected. From these observations and previous knowledge, the possible occurrence in animal hexokinases of a regulatory site for ATP to account for the competition between glucose 6-phosphate and ATP in the forward reaction is postulated.  相似文献   

11.
1. The kinetics of inhibition of brain soluble cytoplasmic hexokinase by ADP were examined in relation to variations in the concentrations of Mg(2+) and ATP. The type of inhibition observed was dependent on the Mg(2+)/ATP ratio. 2. ADP at Mg(2+)/ATP ratios 2:1 exhibited inhibition of the ;mixed' type; at Mg(2+)/ATP ratios 1:1 the inhibition appeared to be competitive with regard to ATP. 3. Inhibition by free ATP was observed when the Mg(2+)/ATP ratio was less than 1:1. The inhibition was also of the ;mixed' type with respect to MgATP(2-). 4. The inhibitions due to ADP and to free ATP were not additive. The results suggested that there may be up to four sites in the soluble enzyme: for glucose, glucose 6-phosphate, ADP and MgATP(2-). 5. The ;free' non-particulate intracellular Mg(2+) concentration was measured and concluded to be about 1.5mm. 6. The concentrations in vivo of Mg(2+) and ATP likely to be accessible to a cytoplasmic enzyme are suggested to be below those that yield maximum hexokinase rates in vitro. The enzymic rates were measured at relevant suboptimum concentrations of Mg(2+) and ATP in the presence of ADP. Calculations that included non-competitive inhibition due to glucose 6-phosphate (56-65% at 0.25mm) resulted in net rates very similar to the measured rates for overall glycolysis. This system may therefore provide a basis for effective control of cerebral hexokinase.  相似文献   

12.
Kinetic studies with skeletal-muscle hexokinase   总被引:1,自引:1,他引:0       下载免费PDF全文
Rat skeletal-muscle hexokinase was partially purified by ammonium sulphate fractionation and gel filtration. The mechanism of the skeletal-muscle hexokinase was studied kinetically by initial-velocity analysis and product inhibition. Glucose 6-phosphate was a non-competitive inhibitor of glucose and ATP. ADP was a non-competitive inhibitor of glucose and a competitive inhibitor of ATP. The data on product inhibition and initial-velocity analysis of skeletal-muscle hexokinase support an ordered sequential mechanism (ordered Bi Bi) where the addition of substrates and release of products is in the order: ATP, glucose, glucose 6-phosphate and ADP.  相似文献   

13.
Previous analyses of glycolytic metabolites in Artemia embryos indicate that an acute inhibition of glucose phosphorylation occurs during pHi-mediated metabolic arrest under anoxia. We describe here kinetic features of hexokinase purified from brine shrimp embryos in an attempt to explain the molecular basis for this inhibition. At saturating concentrations of cosubstrate, ADP is an uncompetitive inhibitor toward glucose and a partial noncompetitive inhibitor toward ATP (Kis = 0.86 mM, Kii = 1.0 mM, Kid = 1.9 mM). With cosubstrates at subsaturating concentrations, the uncompetitive inhibition versus glucose becomes noncompetitive, while inhibition versus ATP remains partial noncompetitive. The partial noncompetitive inhibition of ADP versus ATP is characterized by a hyperbolic intercept replot. These product inhibition patterns are consistent with a random mechanism of enzyme action that follows the preferred order of glucose binding first and glucose-6-P dissociating last. We propose that inhibition by glucose-6-P (Kis = 65 microM) occurs primarily by competing with ATP at the active site, resulting in the formation of the dead-end complex, enzyme-glucose-glucose-6-P. Versus glucose, inhibition by glucose-6-P is uncompetitive at pH 8.0 and noncompetitive at pH 6.8. Over a physiologically relevant pH range of 8.0 to 6.8 alterations in Km and Ki values do not account for the reduction in glucose phosphorylation, and no evidence suggests that Artemia hexokinase activity is modulated by reversible binding to intracellular structures. Total aluminum in the embryos is 4.01 +/- 0.36 micrograms/g dry weight, or, based upon tissue hydration, 72 microM. This concentration of aluminum dramatically reduces enzyme activity at pH values less than 7.2, even in the presence of physiological metal ion chelators (citrate, phosphate). When pH, aluminum, citrate, phosphate, substrates, and products were maintained at cellular levels measured under anoxia, we can account for a 90% inhibition of hexokinase relative to activity under control (aerobic) conditions.  相似文献   

14.
The kinetic mechanism of rat skeletal muscle hexokinase (hexokinase II) was investigated in light of a proposal by Cornish-Bowden and his co-workers (Gregoriou, M., Trayer, I. P., and Cornish-Bowden, A. (1983) Eur. J. Biochem. 134, 283-288). These investigators reported that the kinetic mechanism is ordered, with glucose adding before ATP and ADP dissociating from hexokinase before glucose-6-P. In addition, these workers suggest that glucose-6-P and ATP add to allosteric sites on hexokinase. We investigated the mechanism of action of hexokinase II by studying initial rate kinetics in the nonphysiological direction and by isotope exchange at chemical equilibrium. The former experiments were carried out in the absence of inhibitors and then with AMP, which is a competitive inhibitor of ADP, and with glucose 1,6-bisphosphate, a competitive inhibitor of glucose-6-P. The findings from these experiments suggest that the kinetic mechanism is rapid equilibrium Random Bi Bi. Isotope exchange at equilibrium studies also supports the random nature of the muscle hexokinase reaction; however, they also suggest that the mechanism is partially ordered, i.e. there is a preferred pathway associated with the branched mechanism. Approximately two-thirds of the flux through the hexokinase reaction involves the glucose on first glucose-6-P off last branch of the Random Bi Bi mechanism. These results imply that the kinetic mechanism is steady state Random Bi Bi. There is some evidence to suggest that glucose-6-P binds to an allosteric site on muscle hexokinase, but none to suppose that ATP binds allosterically. Analysis of the mechanism of Gregoriou et al. suggests that it is at variance with the findings of this report as well as with data available from other laboratories.  相似文献   

15.
Genome size of Streptomyces   总被引:2,自引:0,他引:2  
Abstract Purified lactate dehydrogenase from Brochothrix thermosphacta is stimulated by Fru-1,6-P2 and G6P although saturating concentrations are high (> 20 mM). Neither is essential for activity. AMP, ADP and ATP inhibit enzyme activity consistent with either non-competitive (with Fru-1,6-P2 present) or uncompetitive (G6P present) inhibition. Activity is not dependent on Pi (< 200 mM). Based on 31P-NMR of cells, sugar phosphate concentration can reach 30 mM with excess glucose present; NDP and NTP also accumulate to levels that inhibit the isolated enzyme. The effector levels in vitro are therefore appropriate to in vivo metabolism and support a regulatory role for sugar phosphates during pyruvate metabolism in this organism.  相似文献   

16.
It has been proposed that hexokinase bound to mitochondria occupies a preferred site to which ATP from oxidative phosphorylation is channeled directly (Bessman, S. (1966) Am. J. Medicine 40, 740-749). We have investigated this problem in isolated Zajdela hepatoma mitochondria. Addition of ADP to well-coupled mitochondria in the presence of an oxidizable substrate initiates the synthesis of glucose 6-phosphate via bound hexokinase. This reaction is only partially inhibited by oligomycin, carboxyatractyloside, carbonyl cyanide m-chlorophenylhydrazone (CCCP) or any combination of these, suggesting a source of ATP in addition to oxidative phosPhorylation. This source appears to be adenylate kinase, since Ado2P5, an inhibitor of the enzyme, suppresses hexokinase activity by about 50% when added alone or suppresses activity completely when added together with any of the inhibitors of oxidative phosphorylation. Ado2P5 does not uncouple oxidative phosphorylation nor does it inhibit ADP transport (state 3 respiration) or hexokinase. The relative amount of ATP contributed by adenylate kinase is dependent upon the ADP concentration. At low ADP concentrations, glucose phosphorylation is supported by oxidative phosphorylation, but as the adenine nucleotide translocator becomes saturated the ATP contributed by adenylate kinase increases due to the higher apparent Km of the enzyme. Under conditions of our standard experiment ([ADP] = 0.5 mM), adenylate kinase provides about 50% of the ATP used by hexokinase in well-coupled mitochondria. In spite of this, externally added ATP supported higher initial rates of hexokinase activity than ADP. Our findings demonstrate that oxidative phosphorylation is not a specific or preferential source of ATP for hexokinase bound to hepatoma mitochondria. The apparent lack of a channeling mechanism for ATP to hexokinase in these mitochondria is discussed.  相似文献   

17.
L de Meis  M A Grieco  A Galina 《FEBS letters》1992,308(2):197-201
During steady-state, the Pi released in the medium is derived from glucose-6-phosphate which continuously regenerates the ATP hydrolyzed. A membrane potential (delta psi) can be built up in submitochondrial particles using glucose-6-phosphate and hexokinase as an ATP-regenerating system. The energy derived from the membrane potential thus formed, can be used to promote the energy-dependent transhydrogenation from NADH to NADP+ and the uphill electron transfer from succinate to NAD+. In spite of the large differences in the energies of hydrolysis of ATP (delta G degrees = -7.0 to -9.0 kcal/mol) and of glucose-6-phosphate (delta G degrees = -2.5 kcal/mol), the same ratio between Pi production and either NADPH or NADH formation were measured regardless of whether millimolar concentrations of ATP or a mixture of ADP, glucose-6-phosphate and hexokinase were used. Rat liver mitochondria were able to accumulate Ca2+ when incubated in a medium containing hexokinase, ADP and glucose-6-phosphate. The different reaction measured with the use of glucose-6-phosphate and hexokinase were inhibited by glucose concentrations varying from 0.2 to 2 mM. Glucose shifts the equilibrium of the reaction towards glucose-6-phosphate formation thus leading to a decrease of the ATP concentration in the medium.  相似文献   

18.
Manipulation of cellular metabolism to maximize the yield and rate of formation of desired products may be achieved through genetic modification. Batch fermentations utilizing glucose as a carbon source were performed for three recombinant strains of Saccharomyces cerevisiae in which the glucose phosphorylation step was altered by mutation and genetic engineering. The host strain (hxk1 hxk2 glk) is unable to grow on glucose or fructose; the three plasmids investigated expressed hexokinase PI, hexokinase PII, or glucokinase, respectively, enabling more rapid glucose and fructose phosphorylation in vivo than that provided by wild-type yeast.Intracellular metabolic state variables were determined by 31P NMR measurements of in vivo fermentations under nongrowth conditions for high cell density suspensions. Glucose consumption, ethanol and glycerol production, and polysaccharide formation were determined by 13C NMR measurements under the same experimental conditions as used in the 31P NMR measurements. The trends observed in ethanol yields for the strains under growth conditions were mimicked in the nongrowth NMR conditions.Only the strain with hexokinase PI had higher rates of glucose consumption and ethanol production in comparison to healthy diploid strains in the literature. The hexokinase PII strain drastically underutilized its glucose-phosphorylating capacity. A regulation difference in the use of magnesium-free ATP for this strain could be a possible explanation. Differences in ATP levels and cytoplasmic pH values among the strains were observed that could not have been foreseen. However, cytoplasmic pH values do not account for the differences observed among in vivo and in vitro glucose phosphorylation activities of the three recombinant strains.  相似文献   

19.
The purification to homogeneity of hexokinases B and C from the cytosol of rat Novikoff hepatoma was achieved by a protocol using an initial chromatography on Blue 2-agarose to separate the isoenzymes from each other. After that step each hexokinase was subjected to chromatography on DEAE-cellulose, hydroxyapatite and Sephacryl S-300, followed by re-chromatography on hydroxyapatite. The final preparations of hexokinases B and C had specific activities of 86 and 23.5 units/mg of protein respectively, and gave single bands on electrophoresis under non-denaturing conditions or in SDS/polyacrylamide gels. Mr values of about 100,000 were found for both isoenzymes either by Sephacryl S-300 chromatography or by SDS/polyacrylamide-gel electrophoresis. Values of apparent Km for glucose and ATP of pure hexokinase B were similar to those reported for the enzyme from other sources. The apparent Km value for glucose of hexokinase C was 0.025 mM. Marked inhibition of hexokinase C by glucose concentrations above 0.2 mM was found. The effect was partially relieved by ATP concentrations above 1 mM and was independent of pH. Glucose 6-phosphate was inhibitory, but the Ki value (0.18 mM) is higher than those reported for other animal hexokinases. The amino acid composition of hexokinase C was found to be similar to those reported for hexokinases B and D. Also, an immune serum directed against hexokinase A was able, at low dilutions, to bind hexokinases B and C. An immune serum directed against hexokinase C was able, at low dilutions, to bind hexokinase B and also, but weakly, hexokinase A.  相似文献   

20.
1. The inhibition of hexokinase by glucose 6-phosphate has been investigated in crude homogenates of guinea-pig cerebral cortex by using a sensitive radio-chemical technique for the assay of hexokinase activity. 2. It was observed that 44% of cerebral-cortex hexokinase activity did not sediment with the microsomal or mitochondrial fractions (particulate fraction), and this is termed soluble hexokinase. The sensitivities of soluble and particulate hexokinase, and hexokinase in crude homogenates, to the inhibitory actions of glucose 6-phosphate were measured; 50% inhibition was produced by 0.023, 0.046 and 0.068mm-glucose 6-phosphate for soluble, particulate and crude homogenates respectively. 3. The optimum Mg(2+) concentration for the enzyme was about 10mm, and this appeared to be independent of the ATP concentration. In the presence of added glucose 6-phosphate, raising the Mg(2+) concentration to 5mm increased the activity of hexokinase, but above this concentration Mg(2+) potentiated the glucose 6-phosphate inhibition. When present at a concentration above 1mm, Ca(2+) ions inhibited the enzyme in the presence or absence of glucose 6-phosphate. 4. When the ATP/Mg(2+) ratio was 1.0 or below, variations in the ATP concentration had no effect on the glucose 6-phosphate inhibition; above this value ATP inhibited hexokinase in the presence of glucose 6-phosphate. ATP had an inhibitory effect on soluble hexokinase similar to that on a whole-homogenate hexokinase, so that the ATP inhibition could not be explained by a conversion of particulate into soluble hexokinase (which is more sensitive to inhibition by glucose 6-phosphate). It is concluded that ATP potentiates glucose 6-phosphate inhibition of cerebral-cortex hexokinase, whereas the ATP-Mg(2+) complex has no effect. Inorganic phosphate and l-alpha-glycerophosphate relieved glucose 6-phosphate inhibition of hexokinase; these effects could not be explained by changes in the concentration of glucose 6-phosphate during the assay. 5. The inhibition of hexokinase by ADP appeared to be independent of the glucose 6-phosphate effect and was not relieved by inorganic phosphate. 6. The physiological significance of the ATP, inorganic phosphate and alpha-glycerophosphate effects is discussed in relation to the control of glycolysis in cerebral-cortex tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号