首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two wheat (Triticum aestivum L.) varieties, Cheyenne (Ch, winter wheat with excellent frost tolerance) and Chinese Spring (CS, spring wheat with weak frost tolerance), and chromosome substitution lines (CS/Ch 5A, CS/Ch 5D, CS/Ch 7A) created from Cheyenne and Chinese Spring were used to study the effect of chromosome substitutions on the membrane lipid composition in the leaves and crowns before and after cold hardening. The percentage of fatty acid unsaturation in phosphatidylethanolamine was greater in the crown of hardened Cheyenne than in Chinese Spring. The value of CS/Ch 5A was similar to Cheyenne and that of CS/Ch 5D to Chinese Spring, while the value of CS/Ch 7A was in between those of Cheyenne and Chinese Spring. A smaller difference was found between the unsaturation level in the phosphatidylcholine from Cheyenne and Chinese Spring after hardening, while the value obtained for the substitution line CS/Ch 7A was similar to Cheyenne. The percentage decrease in thetrans3-hexadecenoic acid content was found to be correlated with the frost tolerance of the wheat genotypes.  相似文献   

2.
3.
An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2 h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10 min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel.  相似文献   

4.
Enzymatic synthesis of terpenyl esters by esterification or transesterification with fatty acid vinyl esters as acyl donors by celite-adsorbed lipase of Trichosporon fermentans was investigated. In direct esterification of geraniol, the lipase showed high reactivity toward fatty acids with carbon chains longer than C-8, but little reactivity toward fatty acids with shorter chains. With fatty acid vinyl esters as acyl donors, the lipase catalysed the synthesis of geranyl and citronellyl esters with carbon chains shorter than C-6 in with yields of >90% molar conversion. Time course, effects of added water, temperature and substrate concentration were studied for the synthesis of geranyl acetate. Molar conversion yield reached 97.5% after 5 h incubation at 30–40°C with the addition of 3% water. In this reaction, no inhibition by substrates such as geraniol and vinyl acetate was observed.  相似文献   

5.
Zheng X  Cheng W  Wang X  Lei C 《Cryobiology》2011,63(3):164-169
Insects can increase their resistance to cold stress by prior exposure to non-lethal cold temperatures. Here, we investigated the supercooling capacity and survival of eggs, 3rd and 5th instar larvae, and pupae of Spodoptera exigua (Lepidoptera: Noctuidae) during CA, and responses to various pre-treatment protocols, including constant temperatures, thermoperiods, and RCH, RHH, RCH + RHH and RHH + RCH combined with thermoperiods. Only acclimated eggs demonstrated a significant decrease in SCP, from −20.7 ± 0.3 to −22.9 ± 0.3 °C, among all experimental groups compared to non-acclimated stages. Survival increased by 17.5% for eggs, 40.0% and 13.3% for 3rd and 5th instar larvae, and by 20.0% for pupae after CA. Compared to controls, survival of eggs under the conditions of thermoperiod (5:15 °C), thermoperiod (5:15 °C) + RHH, and thermoperiod (5:15, 10:20, and 15:25 °C) + RCH significantly increased. In addition, survival of 3rd and 5th instar larvae and pupae increased under the conditions of thermoperiod (5:15 °C) and thermoperiod (5:15 °C) + RCH, possibly due to the induction of heat shock proteins or cryoprotectants. However, the pre-treatments of thermoperiod + RCH + RHH and thermoperiod + RHH + RCH did not significantly enhance survival of any developmental stage. These adaptive responses may allow S. exigua to enhance supercooling capacity and survival in response to seasonal or unexpected diurnal decreases in environmental temperatures.  相似文献   

6.
To cryopreserve sugar beet shoot tips using an encapsulation-dehydration technique, cold hardening of in vitro plants was needed to obtain high survival rates after freezing. Cold acclimation not only enhanced dehydration and freezing tolerance, but also induced several changes in sugar beet shoots. Plants contained greater amounts of sucrose, D-glucose and D-fructose and the fatty acid composition of lipids changed. Furthermore, the unsaturation level of membrane lipids, estimated by the (C18:2 + C18:1)/C16:0 ratio, increased after cold hardening. These changes were correlated with better survival rates after cryopreservation.  相似文献   

7.
The oriental fruit fly, Bactrocera dorsalis, is a serious insect pest with diverse host range. Furthermore, its invasive and polyphagous behaviors allow this species to expand its habitats. Recent climate change and increase of international trade/transportation facilitate the species expansion from subtropical to temperate regions. Low temperature during winter appears to be the major factor limiting its expansion to temperate zones in the northern hemisphere. This study reports its remarkable ability in rapid cold-hardening (RCH) along with deep supercooling capacity. A brief exposure to 9?°C significantly enhanced cold tolerance of its larvae, pupae, and adults. RCH took 1–2?h for pupae and adults, although it took 24?h for larvae. Supercooling capacity of pupae was also enhanced by RCH treatment from ?13.4?°C to ?16.6?°C. To trace genetic factors associated with RCH, calcium/calmodulin-dependent protein kinase II (Bd-CaMKII) was identified from B. dorsalis and their expression in response to RCH treatment was analyzed. Bd-CaMKII possesses three conserved domains of kinase, calmodulin, and oligomerization. Bd-CaMKII is highly homologous to CaMKII of D. melanogaster and other tephritid flies. Expression levels of Bd-CaMKII in the larvae treated with RCH were significantly increased by approximately 5.5 folds compared to those in control larvae. In addition, expression levels of HSP70 and HSP90 were also increased in response to RCH treatment. These results along with previous studies suggest that cold-hardening of B. dorsalis is functionally associated with its supercooling capacity with increased production of cryoprotectants and HSP through regulatory activity of Bd-CaMKII.  相似文献   

8.
The effect of different carbon sources on the ability of a psychrotrophic Acinetobacter sp., strain HH1-1, to grow at low temperatures and respond to cold shock was investigated by monitoring cell membrane permeability, membrane fluidity and fatty acid composition. Cells were grown in batch cultures with acetate, Tween 80 or olive oil as the sole source of carbon and incubated at 25, 5°C or subjected to a 25 to 5 °C decrease in growth temperature (cold shock). Cell membrane changes were observed following cold shock for all carbon sources. Cells became leaky and membranes less fluid immediately after cold shock. The fatty acid composition of cells also varied significantly with carbon source. A higher content of oleic acid (cis-9-octadecenoic acid – 18:1) was observed in cells grown in the presence of Tween 80 and olive oil compared to cells grown in the presence of acetate. Increased content of palmitoleic acid (cis-9-hexadecenoic acid – 16:1) observed during growth at 5°C and following cold shock indicated that this fatty acid may be important for growth at low temperatures. Acetate-grown cells responded more quickly to cold shock than did Tween 80 or olive oil-grown cells by restoring membrane fluidity and by taking K+ back into the cells. In addition, acetate-grown cells modified the content of fatty acid cis-9-hexadecenoic acid at 2h post cold shock as opposed to 24h post cold shock in cells grown in the presence of Tween 80 or olive oil. This research indicated that cells are most affected by rapid decreases in growth temperature and growth at low temperatures when cells utilized olive oil as the sole source of carbon.  相似文献   

9.
Free Candida antarctica lipase B (Lipozyme, CALB L®) was used to produce fatty acid ethyl esters (FAEE) from refined soybean oil in solvent-free media using the conventional (CHS) and microwave (MHS) heating systems. Statistical analyses (95% confidence level) for both reaction products, FAEE and free fatty acids (FFA), were performed. An increase in ethanol:oil molar ratio decreased the catalytic performance of CALB L (p?<?.05). The best conditions using the microwave radiation were a molar ratio of ethanol:oil of 3:1, a water content of 20.3?wt.% and an enzyme loading of 3?wt.% and this resulted in a total ester content of 64.7% in 15?min, while the same condition using the conventional heating gave only 21.4%. Moreover, the reaction equilibrium was reached 16 times faster with microwave than with conventional heating. High ethanol:oil molar ratios had a negative effect on FAEE synthesis with both CHS and MHS, probably due to the partial inactivation of the enzymes. MHS improved the reaction performance of CALB L, but other process parameters will have to be optimized to enhance the resulting FAEE yields. The recovery and reuse of CALB L using a MHS was demonstrated. Hence, the use of microwave radiation under the conditions applied in this study was not detrimental to the catalytic performance of CALB L for at least one reuse.  相似文献   

10.
In order to study the effect of grazing pastures with a different botanical composition on rumen and intramuscular fatty acid metabolism, 21 male lambs were assigned to three botanically different pastures: botanically diverse (BD) (consisting for 65% of a variety of grass species); Leguminosa rich (L) (consisting for 61% of Leguminosae) and intensive English ryegrass (IR) (with 69% Lolium perenne). Pastures were sampled weekly for 12 weeks for analysis of their fatty acid content and composition and on nine occasions to determine the botanical composition. Ruminal and abomasal contents were sampled at slaughter and muscle and subcutaneous fat 24 h after slaughter. All samples were prepared and analysed for fatty acid composition. The L pasture showed a higher fatty acid content (29.8 mg/g dry matter (DM) v. 18.5 and 25.5 mg/g DM, for BD and IR pastures, respectively), but the sum of the proportions of the major polyunsaturated fatty acids, C18:2 n-6 and C18:3 n-3, were similar for the three pastures (69.9, 69.4 and 71.1% of fatty acids methyl esters (FAME) for BD, L and IR pastures, respectively). The BD pasture was richer in C18:2 n-6 (18.2% of FAME), while IR pasture had a higher C18:3 n-3 content (57.2% of FAME). Rumen data showed that animals grazing the BD pasture presented higher proportions of biohydrogenation intermediates, mainly C18:1 t11, C18:2 t11c15 and CLA c9t11, suggesting an inhibition of biohydrogenation. These changes were associated with shifts in the rumen microbial population as indicated by differences in the rumen pattern of volatile fatty acids, microbial odd- and branched-chain fatty acids. In L pasture animals, the content of C18:2 n-6 and C18:3 n-3 in the abomasum and subcutaneous fat was higher. Finally, higher proportions of C20:4 n-6, C20:5 n-3 and C22:5 n-3 and higher indices for elongation and desaturation activity in the intramuscular fat of BD grazing animals suggest some stimulation of elongation and desaturation of long-chain fatty acids, although this also might have been provoked partially by reduced fat deposition (due to a lower growth rate of the animals).  相似文献   

11.
In winter wheat, the tubulin and 60 kDa-phosphorylated proteins/actin ratio is considerably higher in the roots than in the leaves. Differences in the content of the main cytoskeletal proteins were also found in the leaves of the different cultivars. It is suggested that the lower amount of the tubulin and 60 kDa-phosphorylated proteins and higher content of actin determine the greater tubulin cytoskeletal stability in the leaves and their higher frost resistance, as compared with the roots. Also, it is possible that the higher content of the tubulin and 60 kDa-phosphorylated proteins defines the lower microtubule (MT) stability in the leaves of the low frost resistant cultivar than in the leaves of the more frost resistant ones. In the roots and leaves of the low frost resistant cultivar, the low stability of the numerous tubulin structures is apparently one reason for the abscisic acid (ABA)-induced reduction of the cytoskeletal and 60 kDa-phosphorylated proteins in the cells. The cold acclimation compensated the ABA effect in the roots of the very frost resistant cultivar in the most extent. This suggests the existence of the different pathways in the increased plant cell frost resistance through the action of ABA and low temperature.  相似文献   

12.
13.
14.
15.
16.
17.
n-3 polyunsaturated fatty acids (n-3 PUFA) contribute to the normal growth and development of numerous organs in the piglet. The fatty acid composition of piglet tissues is linked to the fatty acid composition of sow milk and, consequently, to the composition of sow diet during the gestation and lactation period. In this study, we investigated the impact of different contents of extruded linseed in the sow diet on the fatty acid composition and desaturase gene expression of piglets. Sows received a diet containing either sunflower oil (low 18:3n-3 with 18:3n-3 representing 3% of total fatty acids) or a mixture of extruded linseed and sunflower oil (medium 18:3n-3 with 9% of 18:3n-3) or extruded linseed (high 18:3n-3 with 27% of 18:3n-3) during gestation and lactation. Fatty acid composition was evaluated on sow milk and on different piglet tissues at days 0, 7, 14, 21 and 28. The postnatal evolution of delta5 (D5D) and delta6 (D6D) desaturase mRNA expression was also measured in the liver of low 18:3n-3 and high 18:3n-3 piglets. The milk of high 18:3n-3 sows had higher proportions of n-3PUFA than that of low 18:3n-3 and medium 18:3n-3 sows. Piglets suckling the high 18:3n-3 sows had greater proportions of 18:3n-3, 20:5n-3, 22:5n-3 and 22:6n-3 in the liver, and of 22:5n-3 and 22:6n-3 in the brain than low 18:3n-3 and medium 18:3n-3 piglets. D5D and D6D mRNA expressions in piglet liver were not affected by the maternal diet at any age. In conclusion, extruded linseed in the sow diet modifies the n-3PUFA status of piglets during the postnatal period. However, a minimal content of 18:3n-3 in the sow diet is necessary to increase the n-3PUFA level in piglet liver and brain. Moreover, modifications in the n-3PUFA fatty acid composition of piglet tissue seem linked to the availability of 18:3n-3 in maternal milk and not to desaturase enzyme expression.  相似文献   

18.
Three parameters (i.e. the water content, soluble sugar content and minimal air temperature) can be used to predict the cold acclimation process of walnut trees. In order to test this assumption, two-year-old walnuts were defoliated at two different dates, i.e. mechanical defoliation in early October (early leaf fall, EF) or natural defoliation in early November (natural leaf fall, NF) and conditioned in either outdoor freeze-deprived or cold-deprived (Tmin > 13 °C) greenhouses over winter. Even if early defoliation date could have affected short day signal perception (SDSP), water balance and carbohydrate metabolism were more altered. EF treatment, by stopping transpiration, significantly increased tree's water content and at warm temperature high root activity stopped normal winter dehydration. Starch content decreased in all treatments, but there was only a significant increase in soluble sugar content when water content had sufficiently decreased. Thus, depending on date of defoliation, cold-deprived trees were or were not able to acclimate to frost (minimal frost hardiness = −21.8 °C vs. −22.1 °C in controls (freeze-deprived) for NF and −13.7 °C vs. −25.3 °C in controls for EF). Different treatments showed the relationship between minimal water content observed during winter and maximal soluble sugars synthesized. Thus, the cold acclimation process appeared dependent on these physiological parameters (water and soluble sugar contents) through the interaction between air temperature and timing of leaf fall.  相似文献   

19.
人工种植西洋参(Panax quinquefolius)具有很高的经济效益, 但连作障碍已成为其产业可持续发展的限制因子。目前对连作障碍成因的研究尚且不足。该研究以收获西洋参后恢复1、10、20年的老参地(分别记为A1、A10、A20)为研究对象, 以未种植过西洋参的土地为对照(CK), 测定和分析土壤养分及酚酸类代谢物的变化, 以期从养分和化感作用的角度解析可能造成西洋参连作障碍的关键因子。通过常规化学性质测定方法和气相色谱质谱联用(GC-MS)的方法测定土壤养分含量, 采用高效液相色谱法(HPLC)测定土壤中的酚酸类代谢物含量。结果显示, 3组收获西洋参后的老参地的土壤pH均显著降低; A1 25种有机态养分(氨基酸类、糖类和糖醇类物质)的含量显著降低, N-乙酰鸟氨酸、5-氨基戊酸、丝氨酸、亮氨酸、甘油和槐糖等的含量均在所有老参地中显著下降, 经过20年轮作后依然不能恢复到对照水平。同时, 与预期相反, 被认为具有化感自毒作用的酚酸类代谢物在收获西洋参后含量也显著下降, 其中, 香豆酸、原儿茶酸、阿魏酸和苯甲酸的含量在A1中显著低于CK, 但经过10年时间轮作后可以恢复到接近对照水平。另外, p-香豆酸和丁香酸在A1、A10、A20的含量均显著低于CK, 即经过20年轮作依然不能恢复到对照水平; 酚酸类代谢物对西洋参生长的积极意义应被重视。相关性分析显示上述有机态养分含量、pH和酚酸类代谢物含量之间大多数呈显著正相关关系, 表明各土壤特性之间存在密切的交互作用。综上所述, 种植西洋参引起的土壤酸化、有机态养分和酚酸类代谢物含量降低及各因子间的协同作用可能是西洋参连作障碍的关键因素。  相似文献   

20.
小麦籽粒中植酸、戊聚糖含量及其与相关性状关系的研究   总被引:4,自引:0,他引:4  
选用不同基因型小麦,测定了籽粒中植酸、蛋白质及戊聚糖的含量,并对其进行遗传相关分析,结果表明:(1)各性状在品种间存在显著性差异,且植酸的广义遗传力比较低;(2)植酸含量与蛋白质含量呈极显著的正相关,与戊聚糖呈极显著负相关。通过对参试的18个不同基因型小麦中植酸和戊聚糖含量进行聚类分析,可以将18个基因型小麦聚为四类,并初步认为豫麦47是参试品种中最适宜于用作饲用小麦。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号