首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Kim YJ  Ko IJ  Lee JM  Kang HY  Kim YM  Kaplan S  Oh JI 《Journal of bacteriology》2007,189(15):5617-5625
In this study, the H303A mutant form of the cbb(3) oxidase (H303A oxidase), which has the H303A mutation in its catalytic subunit (CcoN), was purified from Rhodobacter sphaeroides. The H303A oxidase showed the same catalytic activity as did the wild-type form of the oxidase (WT oxidase). The heme contents of the mutant and WT forms of the cbb(3) oxidase were also comparable. However, the puf and puc operons, which are under the control of the PrrBA two-component system, were shown to be derepressed aerobically in the R. sphaeroides strain expressing the H303A oxidase. Since the strain harboring the H303A oxidase exhibited the same cytochrome c oxidase activity as the stain harboring the WT oxidase did, the aerobic derepression of photosynthesis gene expression observed in the H303A mutant appears to be the result of a defective signaling function of the H303A oxidase rather than reflecting any redox changes in the ubiquinone/ubiquinol pool. It was also demonstrated that ubiquinone inhibits not only the autokinase activity of full-length PrrB but also that of the truncated form of PrrB lacking its transmembrane domain, including the proposed quinone binding sequence. These results imply that the suggested ubiquinone binding site within the PrrB transmembrane domain is not necessary for the inhibition of PrrB kinase activity by ubiquinone. Instead, it is probable that signaling through H303 of the CcoN subunit of the cbb(3) oxidase is part of the pathway through which the cbb(3) oxidase affects the relative kinase/phosphatase activity of the membrane-bound PrrB.  相似文献   

2.
The PrrBA two-component activation system of Rhodobacter sphaeroides plays a major role in the induction of photosynthesis gene expression under oxygen-limiting or anaerobic conditions. The PrrB histidine kinase is composed of two structurally identifiable regions, the conserved C-terminal kinase/phosphatase domain and the N-terminal membrane-spanning domain with six transmembrane helices framing three periplasmic and two cytoplasmic loops. Using a set of PrrB mutants with lesions in the transmembrane domain, we demonstrate that the central portion of the PrrB transmembrane domain including the second periplasmic loop plays an important role in both sensing and signal transduction. Signal transduction via the transmembrane domain is ultimately manifested by controlling the activity of the C-terminal kinase/phosphatase domain. The extent of signal transduction is determined by the ability of the transmembrane domain to sense the strength of the inhibitory signal received from the cbb(3) terminal oxidase (J.-I Oh, and S. Kaplan, EMBO J. 19:4237-4247, 2000). Therefore, the intrinsic ("default") state of PrrB is in the kinase-dominant mode. It is also demonstrated that the extent of prrB gene expression is subject to the negative autoregulation of the PrrBA system.  相似文献   

3.
The cbb3 cytochrome c oxidase has the dual function as a terminal oxidase and oxygen sensor in the photosynthetic bacterium, Rhodobacter sphaeroides. The cbb3 oxidase forms a signal transduction pathway together with the PrrBA two-component system that controls photosynthesis gene expression in response to changes in oxygen tension in the environment. Under aerobic conditions the cbb3 oxidase generates an inhibitory signal, which shifts the equilibrium of PrrB kinase/phosphatase activities towards the phosphatase mode. Photosynthesis genes are thereby turned off under aerobic conditions. The catalytic subunit (CcoN) of the R. sphaeroides cbb3 oxidase contains five histidine residues (H214, H233, H303, H320, and H444) that are conserved in all CcoN subunits of the cbb3 oxidase, but not in the catalytic subunits of other members of copper-heme superfamily oxidases. H214A mutation of CcoN affected neither catalytic activity nor sensory (signaling) function of the cbb3 oxidase, whereas H320A mutation led to almost complete loss of both catalytic activity and sensory function of the cbb3 oxidase. H233V and H444A mutations brought about the partial loss of catalytic activity and sensory function of the cbb3 oxidase. Interestingly, the H303A mutant form of the cbb3 oxidase retains the catalytic function as a cytochrome c oxidase as compared to the wild-type oxidase, while it is defective in signaling function as an oxygen sensor. H303 appears to be implicated in either signal sensing or generation of the inhibitory signal to the PrrBA two-component system.  相似文献   

4.
5.
6.
7.
In Rhodobacter sphaeroides, the two cbb operons encoding duplicated Calvin-Benson Bassham (CBB) CO2 fixation reductive pentose phosphate cycle structural genes are differentially controlled. In attempts to define the molecular basis for the differential regulation, the effects of mutations in genes encoding a subunit of Cbb3 cytochrome oxidase, ccoP, and a global response regulator, prrA (regA), were characterized with respect to CO2 fixation (cbb) gene expression by using translational lac fusions to the R. sphaeroides cbb(I) and cbb(II) promoters. Inactivation of the ccoP gene resulted in derepression of both promoters during chemoheterotophic growth, where cbb expression is normally repressed; expression was also enhanced over normal levels during phototrophic growth. The prrA mutation effected reduced expression of cbb(I) and cbb(II) promoters during chemoheterotrophic growth, whereas intermediate levels of expression were observed in a double ccoP prrA mutant. PrrA and ccoP1 prrA strains cannot grow phototrophically, so it is impossible to examine cbb expression in these backgrounds under this growth mode. In this study, however, we found that PrrA mutants of R. sphaeroides were capable of chemoautotrophic growth, allowing, for the first time, an opportunity to directly examine the requirement of PrrA for cbb gene expression in vivo under growth conditions where the CBB cycle and CO2 fixation are required. Expression from the cbb(II) promoter was severely reduced in the PrrA mutants during chemoautotrophic growth, whereas cbb(I) expression was either unaffected or enhanced. Mutations in ccoQ had no effect on expression from either promoter. These observations suggest that the Prr signal transduction pathway is not always directly linked to Cbb3 cytochrome oxidase activity, at least with respect to cbb gene expression. In addition, lac fusions containing various lengths of the cbb(I) promoter demonstrated distinct sequences involved in positive regulation during photoautotrophic versus chemoautotrophic growth, suggesting that different regulatory proteins may be involved. In Rhodobacter capsulatus, ribulose 1,5-bisphosphate carboxylase-oxygenase (RubisCO) expression was not affected by cco mutations during photoheterotrophic growth, suggesting that differences exist in signal transduction pathways regulating cbb genes in the related organisms.  相似文献   

8.
Photosynthesis gene expression in Rhodobacter sphaeroides is controlled in part by the two-component (Prr) regulatory system composed of a membrane-bound sensor kinase (PrrB) and a response regulator (PrrA). Hydropathy profile-based computer analysis predicted that the PrrB polypeptide could contain six membrane-spanning domains at its amino terminus and a hydrophilic, cytoplasmic carboxyl terminus. Both the localization and the topology of the PrrB sensor kinase have been studied by generating a series of gene fusions with the Escherichia coli periplasmically localized alkaline phosphatase and the cytoplasmic beta-galactosidase. Eighteen prrB-phoA and five prrB-lacZ fusions were constructed and expressed in both E. coli and R. sphaeroides. Enzymatic activity assays and immunoblot analyses were performed to identify and to localize the different segments of PrrB in the membrane. The data obtained in E. coli generally correlated with the data obtained in R. sphaeroides and support the computer predictions. On the basis of the theoretical model and the results provided by these studies, a topological model for the membrane localization of the PrrB polypeptide is proposed.  相似文献   

9.
We describe the solution structures of two- and three-domain constructs of the sensor histidine kinase PrrB from Mycobacterium tuberculosis, which allow us to locate the HAMP linker relative to the ATP binding and dimerization domains. We show that the three-domain construct is active both for autophosphorylation and for phosphotransfer to the cognate response regulator, PrrA. We also describe the high-resolution crystal structure of the catalytic domain alone, and we show that, in solution, it binds ATP. The conformational flexibility of this domain is discussed and related to other structural information.  相似文献   

10.
The volume of electron flow through the cbb3 branch of the electron transport chain and the redox state of the quinone pool generate signals that regulate photosynthesis gene expression in Rhodobacter sphaeroides. An inhibitory signal is generated at the level of the catalytic subunit of the cbb3 cytochrome c oxidase and is transduced through the membrane-localized PrrC polypeptide to the PrrBA two-component activation system, which controls the expression of most of the photosynthesis genes in response to O2. The redox state of the quinone pool is monitored by the redox-active AppA antirepressor protein, which determines the functional state of the PpsR repressor protein. The antirepressor/repressor system as well as a modulator of AppA function, TspO, together with FnrL and PrrA stringently control photopigment gene expression. These regulatory elements, together with spectral complex-specific assembly factors, control the ultimate cellular levels and composition of the photosynthetic membrane.  相似文献   

11.
In many bacteria the ccoGHIS cluster, located immediately downstream of the structural genes (ccoNOQP) of cytochrome cbb(3) oxidase, is required for the biogenesis of this enzyme. Genetic analysis of ccoGHIS in Rhodobacter capsulatus demonstrated that ccoG, ccoH, ccoI and ccoS are expressed independently of each other, and do not form a simple operon. Absence of CcoG, which has putative (4Fe-4S) cluster binding motifs, does not significantly affect cytochrome cbb(3) oxidase activity. However, CcoH and CcoI are required for normal steady-state amounts of the enzyme. CcoI is highly homologous to ATP-dependent metal ion transporters, and appears to be involved in the acquisition of copper for cytochrome cbb(3) oxidase, since a CcoI-minus phenotype could be mimicked by copper ion starvation of a wild-type strain. Remarkably, the small protein CcoS, with a putative single transmembrane span, is essential for the incorporation of the redox-active prosthetic groups (heme b, heme b(3 )and Cu) into the cytochrome cbb(3) oxidase. Thus, the ccoGHIS products are involved in several steps during the maturation of the cytochrome cbb(3) oxidase.  相似文献   

12.
The temporal and spatial behavior of a number of mutants of the photosynthetic, facultative anaerobe Rhodobacter sphaeroides to both step changes and to gradients of oxygen was analyzed. Wild-type cells, grown under a range of conditions, showed microaerophilic behavior, accumulating in a 1.3-mm band about 1.3 mm from the meniscus of capillaries. Evidence suggests this is the result of two signaling pathways. The strength of any response depended on the growth and incubation conditions. Deletion of either the complete chemosensory operons 1 and 2 plus the response regulator genes cheY(4) and cheY(5) or cheA(2) alone led to the loss of all aerotactic responses, although the cells still swam normally. The Prr system of R. sphaeroides responds to electron flow through the alternative high-affinity cytochrome oxidase, cbb(3), controlling expression of a wide range of metabolic pathways. Mutants with deletions of either the complete Prr operon or the histidine kinase, PrrB, accumulated up to the meniscus but still formed a thick band 1.3 mm from the aerobic interface. This indicates that the negative aerotactic response to high oxygen levels depends on PrrB, but the mutant cells still retain the positive response. Tethered PrrB(-) cells also showed no response to a step-down in oxygen concentration, although those with deletions of the whole operon showed some response. In gradients of oxygen where the concentration was reduced at 0.4 micro M/s, tethered wild-type cells showed two different phases of response, with an increase in stopping frequency when the oxygen concentration fell from 80 to 50% dissolved oxygen and a decrease in stopping at 50 to 20% dissolved oxygen, with cells returning to their normal stopping frequency in 0% oxygen. PrrB and CheA(2) mutants showed no response, while PrrCBA mutants still showed some response.  相似文献   

13.
Bradyrhizobium japonicum utilizes cytochrome cbb 3 oxidase encoded by the fixNOQP operon to support microaerobic respiration under free-living and symbiotic conditions. It has been previously shown that, under denitrifying conditions, inactivation of the cycA gene encoding cytochrome c 550, the electron donor to the Cu-containing nitrite reductase, reduces cbb 3 expression. In order to establish the role of c 550 in electron transport to the cbb 3 oxidase, in this work, we have analyzed cbb 3 expression and activity in the cycA mutant grown under microaerobic or denitrifying conditions. Under denitrifying conditions, mutation of cycA had a negative effect on cytochrome c oxidase activity, heme c (FixP and FixO) and heme b cytochromes as well as expression of a fixP '–' lacZ fusion. Similarly, cbb 3 oxidase was expressed very weakly in a napC mutant lacking the c -type cytochrome, which transfers electrons to the NapAB structural subunit of the periplasmic nitrate reductase. These results suggest that a change in the electron flow through the denitrification pathway may affect the cellular redox state, leading to alterations in cbb 3 expression. In fact, levels of fixP '–' lacZ expression were largely dependent on the oxidized or reduced nature of the carbon source in the medium. Maximal expression observed in cells grown under denitrifying conditions with an oxidized carbon source required the regulatory protein RegR.  相似文献   

14.
Eraso JM  Kaplan S 《Biochemistry》2000,39(8):2052-2062
Activation of photosynthesis (PS) gene expression by the PrrBA two-component activation system in Rhodobacter sphaeroides 2.4.1 results from the interruption of an inhibitory signal originating from the cbb(3) cytochrome c oxidase via its interaction with oxygen, in conjunction with the Rdx redox proteins. The CcoQ protein, encoded by the ccoNOQP operon, which encodes the cbb(3) cytochrome c oxidase, was shown to act as a "transponder" that conveys the signal derived from reductant flow through cbb(3) to oxygen, to the Prr system. To further define the elements comprising this signal transduction pathway we considered the prrC gene product, which to date possessed no definable role in this signal transduction pathway despite its being part of the prrBCA gene cluster. Similar to mutations in cbb(3) and rdx, suitably constructed prrC deletion mutations lead to PS gene expression in the presence of high oxygen. Unlike mutations that remove cbb(3) terminal oxidase activity or Rdx function, the PrrC deletion mutant shows no effect upon cbb(3) activity, nor does it affect the ratio of the carotenoid (Crt) spheroidene (SE) to spheroidenone (SO). Thus, the PrrC deletion mutant behaves identically to the CcoQ deletion mutant. Taking these and previous results together, we suggest that PrrC is located upstream of the two-component PrrBA activation system in the signal transduction pathway but downstream of the cbb(3) cytochrome c oxidase and its "transponder" CcoQ. The PrrC deletion mutant was also shown to lead to an increase in the DorA protein under aerobic conditions as was shown earlier for the cbb(3) mutant. Finally, PrrC is a member of a highly conserved family of proteins found in both prokaryotes and eukaryotes, and this appears to be the first instance in which a direct regulatory role has been ascribed to a member of this protein family.  相似文献   

15.
It has been a long-standing hypothesis that the endosymbiotic rhizobia (bacteroids) cope with a concentration of 10 to 20 nM free O2 in legume root nodules by the use of a specialized respiratory electron transport chain terminating with an oxidase that ought to have a high affinity for O2. Previously, we suggested that the microaerobically and anaerobically induced fixNOQP operon of Bradyrhizobium japonicum might code for such a special oxidase. Here we report the biochemical characteristics of this terminal oxidase after a 27-fold enrichment from membranes of anaerobically grown B. japonicum wild-type cells. The purified oxidase has TMPD (N,N,N',N'-tetramethyl-p-phenylenediamine) oxidase activity as well as cytochrome c oxidase activity. N-terminal amino acid sequencing of its major constituent subunits confirmed that presence of the fixN,fixO, and fixP gene products. FixN is a highly hydrophobic, heme B-binding protein. FixO and FixP are membrane-anchored c-type cytochromes (apparent Mrs of 29,000 and 31,000, respectively), as shown by their peroxidase activities in sodium dodecyl sulfate-polyacrylamide gels. All oxidase properties are diagnostic for it to be a member of the cbb3-type subfamily of heme-copper oxidases. The FixP protein was immunologically detectable in membranes isolated from root nodule bacteroids, and 85% of the total cytochrome c oxidase activity in bacteroid membranes was contributed by the cbb3-type oxidase. The Km values for O2 of the purified enzyme and of membranes from different B. japonicum wild-type and mutant strains were determined by a spectrophotometric method with oxygenated soybean leghemoglobin as the sole O2 delivery system. The derived Km value for O2 of the cbb3-type oxidase in membranes was 7 nM, which is six- to eightfold lower than that determined for the aerobic aa3-type cytochrome c oxidase. We conclude that the cbb3-type oxidase supports microaerobic respiration in endosymbiotic bacteroids.  相似文献   

16.
Cytochrome oxidases are perfect model substrates for analyzing the assembly of multisubunit complexes because the need for cofactor incorporation adds an additional level of complexity to their assembly. cbb(3)-type cytochrome c oxidases (cbb(3)-Cox) consist of the catalytic subunit CcoN, the membrane-bound c-type cytochrome subunits CcoO and CcoP, and the CcoQ subunit, which is required for cbb(3)-Cox stability. Biogenesis of cbb(3)-Cox proceeds via CcoQP and CcoNO subcomplexes, which assemble into the active cbb(3)-Cox. Most bacteria expressing cbb(3)-Cox also contain the ccoGHIS genes, which encode putative cbb(3)-Cox assembly factors. Their exact function, however, has remained unknown. Here we analyzed the role of CcoH in cbb(3)-Cox assembly and showed that CcoH is a single spanning-membrane protein with an N-terminus-out-C-terminus-in (N(out)-C(in)) topology. In its absence, neither the fully assembled cbb(3)-Cox nor the CcoQP or CcoNO subcomplex was detectable. By chemical cross-linking, we demonstrated that CcoH binds primarily via its transmembrane domain to the CcoP subunit of cbb(3)-Cox. A second hydrophobic stretch, which is located at the C terminus of CcoH, appears not to be required for contacting CcoP, but deleting it prevents the formation of the active cbb(3)-Cox. This suggests that the second hydrophobic domain is required for merging the CcoNO and CcoPQ subcomplexes into the active cbb(3)-Cox. Surprisingly, CcoH does not seem to interact only transiently with the cbb(3)-Cox but appears to stay tightly associated with the active, fully assembled complex. Thus, CcoH behaves more like a bona fide subunit of the cbb(3)-Cox than an assembly factor per se.  相似文献   

17.
The structure of the two-domain response regulator PrrA from Mycobacterium tuberculosis shows a compact structure in the crystal with a well defined interdomain interface. The interface, which does not include the interdomain linker, makes the recognition helix and the trans-activation loop of the effector domain inaccessible for interaction with DNA. Part of the interface involves hydrogen-bonding interactions of a tyrosine residue in the receiver domain that is believed to be involved in signal transduction, which, if disrupted, would destabilize the interdomain interface, allowing a more extended conformation of the molecule, which would in turn allow access to the recognition helix. In solution, there is evidence for an equilibrium between compact and extended forms of the protein that is far toward the compact form when the protein is inactivated but moves toward a more extended form when activated by the cognate sensor kinase PrrB.  相似文献   

18.
19.
20.
SenC, a Sco1 homolog found in the purple photosynthetic bacteria, has been implicated in affecting photosynthesis and respiratory gene expression, as well as assembly of cytochrome c oxidase. In this study, we show that SenC from Rhodobacter capsulatus is involved in the assembly of a fully functional cbb(3)-type cytochrome c oxidase, as revealed by decreased cytochrome c oxidase activity in a senC mutant. We also show that a putative copper-binding site in SenC is required for activity and that a SenC deletion phenotype can be rescued by the addition of exogenous copper to the growth medium. In addition, we demonstrate that a SenC mutation has an indirect effect on gene expression caused by a reduction in cytochrome c oxidase activity. A model is proposed whereby a reduction in cytochrome c oxidase activity impedes the flow of electrons through the respiratory pathway, thereby affecting the oxidation/reduction state of the ubiquinone pool, leading to alterations of photosystem and respiratory gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号