首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Human coagulation factor VIIai that lacks the Gla domain (residues 1-44) has been prepared, purified, and crystallised. First, recombinant factor VII was activated to form factor VIIa, the active site was then inhibited with 1,5-dansyl-Glu-Gly-Arg-chloromethyl ketone, and finally the Gla domain was removed by chymotryptic digestion, yielding factor VIIai (des-Gla). After further purification single crystals suitable for x-ray analysis were obtained by vapour diffusion. Crystals of factor VIIai (des-Gla) belong to the tetragonal space group P41212 or P43212 with unit cell dimensions a = b = 94.85 A, c = 114.30 A, contain one molecule per asymmetric unit, and diffract to 2.3-A resolution when exposed to synchrotron radiation.  相似文献   

2.
Exposure of blood to tissue factor leads to the formation of a high affinity tissue factor/factor VIIa complex which initiates blood coagulation. As a first step toward obtaining structural information of this enzyme system, a complex of active-site inhibited factor VIIa (F.VIIai) and soluble tissue factor (sTF) was prepared for crystallization. Crystals were obtained, but only after long incubation times. Analysis by SDS-PAGE and mass spectrometry indicated the presence of sTF fragments similar to those formed by proteolytic digestion with subtilisin (Konigsberg, W., Nemerson, Y., Fang, C., Lin, T.-C. Thromb. Haemost. 69:1171, 1993). To test the hypothesis that limited proteolysis of sTF facilitated the crystallization of the complex, sTF fragments were generated by subtilisin digestion and purified. Analysis by tandem mass spectrometry showed the presence of nonoverlapping N- and C-terminal sTF fragments encompassing more than 90% of the tissue factor extracellular domain. Enzymatic assays and binding studies demonstrated that an equimolar mixture of N- and C-terminal fragments bound to factor VIIa and fully restored cofactor activity. A complex of F.VIIai and sTF fragments was prepared for crystallization. Crystals were obtained using microseeding techniques. The best crystals had maximum dimensions of 0.12 × 0.12 × 0.6 mm and showed diffraction to a resolution of 3 Å. © 1995 Wiley-Liss, Inc.  相似文献   

3.
Blood clotting factor VIIa is involved in the first step of the blood coagulation cascade, as a membrane-associated enzyme in complex with tissue factor (TF). Factor VIIa is also an important therapeutic agent for hemophilia where its function may include TF-independent as well as TF-dependent mechanisms. This study compared the activity of wild type factor VIIa (WT-VIIa) with that of a mutant with elevated affinity for membrane (P10Q/Q32E, QE-VIIa). Phospholipid and cell-based assays showed the mutant to have up to 40-fold higher function than WT-VIIa in both TF-dependent and TF-independent reactions. Tissue factor-dependent reactions displayed the maximum enhancement when binding had reached equilibrium in competition with another TF-binding protein. In liposome-based assays, the association rate of WT-VIIa with TF occurred at a physical maximum and could not be improved by site-directed mutagenesis. A practical consequence was identical function of WT-VIIa and QE-VIIa in assays that depended entirely on assembly kinetics. Thus, factor VIIa mutants provided unique reagents for probing the mechanism of factor VIIa action. They may also offer superior agents for therapy.  相似文献   

4.
The interaction of factor VIIa with tissue factor (TF) results in an increase in the catalytic efficiency for the hydrolysis of several synthetic peptidyl p-nitroanilide substrates by factor VIIa. The binding of human recombinant factor VIIa to recombinant human TF incorporated into vesicles containing phosphatidylcholine (TF/PC) or phosphatidylcholine/phosphatidylserine (TF/PCPS) was studied using the increased rate of H-D-phenylalanyl L-pipecoyl L-arginine p-nitroanilide (S2238) hydrolysis as a signal for the interaction. The saturable dependence of rate on increasing concentrations of factor VIIa or TF/PCPS yielded no obvious evidence for cooperativity and could be analyzed according to the interaction of factor VIIa with independent noninteracting sites (Kd = 259 +/- 60 pM, n = 1.05 +/- 0.12 mol of factor VIIa/mol of TF at saturation). Identical titration curves and equilibrium parameters were derived from titrations using TF/PC or TF in the absence of phospholipids, indicating that possible protein-membrane interactions do not further stabilize the extrinsic Xase complex. The dissociation constant for the interaction of factor VIIa with TF/PCPS inferred from measurements of factor X activation (Kd = 197 +/- 38 pM) was comparable with the values obtained from measurements of S2238 hydrolysis. In contrast to the membrane-independent nature of the enzyme-cofactor interaction, the rate of factor X activation was reduced by approximately 50-fold when the enzyme complex was assembled using solution-phase TF. Collectively, the result indicate that the membrane dependence of extrinsic Xase function primarily results from an influence of the membrane surface on factor X utilization.  相似文献   

5.
The structural basis of function of tissue factor (TF), the cell surface receptor and cofactor for the serine protease factor VIIa, cannot be inferred from the primary sequence. The functional significance of the two disulfide bonded loops in the surface domain of TF has been analyzed using site-directed mutagenesis to selectively preclude covalent stabilization of these loops by pairwise substitution of serine residues for cysteines. Mutant TF lacking either the amino (TFS49S57) or carboxyl (TFS186S209) disulfide bond were expressed on the surface of cells consistent with proper processing. Each reacted with a panel of monoclonal antibodies further suggesting proper global folding of the mutant proteins. TFS186S209 exhibited a selective decrease in reactivity with an antibody directed against one epitope locus in the carboxyl aspect of the surface domain of TF. Whereas TFS49S57 was functionally comparable to the wild type protein, TFS186S209 was functionally 30-40-fold less effective, and the affinity of factor VIIa binding to this mutant was indirectly estimated to be diminished 20-fold. These data suggest that the Cys186-Cys209 disulfide bond is required to maintain conformation and implicate the disulfide loop or adjacent structures in the carboxyl half of the surface domain of TF in receptor function.  相似文献   

6.
Serine protease activation is typically controlled by proteolytic cleavage of the scissile bond, resulting in spontaneous formation of the activating Ile(16)-Asp(194) salt bridge. The initiating coagulation protease factor VIIa (VIIa) differs by remaining in a zymogen-like conformation that confers the control of catalytic activity to the obligatory cofactor and receptor tissue factor (TF). This study demonstrates that the unusual hydrophobic Met(156) residue contributes to the propensity of the VIIa protease domain to remain in a zymogen-like conformation. Mutation of Met(156) to Gln, which is found in the same position of the highly homologous factor IX, had no influence on the amidolytic and proteolytic activity of TF-bound VIIa. Furthermore, the mutation did not appreciably stabilize the labile Ile(16)-Asp(194) salt bridge in the absence of cofactor. VIIa(Gln156) had increased affinity for TF, consistent with a long range conformational effect that stabilized the cofactor binding site in the VIIa protease domain. Notably, in the absence of cofactor, amidolytic and proteolytic function of VIIa(Gln156) were enhanced 3- and 9-fold, respectively, compared with wild-type VIIa. The mutation thus selectively influenced the catalytic activity of free VIIa, identifying the Met(156) residue position as a determinant for the zymogen-like properties of free VIIa.  相似文献   

7.
Site-directed mutagenesis of the 40 N-terminal residues (gamma-carboxyglutamic acid domain) of blood clotting factor VII was carried out to identify sites that improve membrane affinity. Improvements and degree of change included P10Q (2-fold), K32E (13-fold), and insertion of Tyr at position 4 (2-fold). Two other beneficial changes, D33F (2-fold) and A34E (1.5-fold), may exert their impact via influence of K32E. The modification D33E (5.2-fold) also resulted in substantial improvement. The combined mutant with highest affinity, (Y4)P10Q/K32E/D33F/A34E, showed 150-296-fold enhancement over wild-type factor VIIa, depending on the assay used. Undercarboxylation of Glu residues at positions 33 and 34 may result in an underestimate of the true contributions of gamma-carboxyglutamic acid at these positions. Except for the Tyr(4) mutant, all other beneficial mutations were located on the same surface of the protein, suggesting a possible membrane contact region. An initial screening assay was developed that provided faithful evaluation of mutants in crude mixtures. Overall, the results suggest features of membrane binding by vitamin K-dependent proteins and provide reagents that may prove useful for research and therapy.  相似文献   

8.
Immunoadsorbents were modified with monomethoxy-polyethylene glycol (PEG; average molecular weights of 5000 (PEG-5000) and 1900 (PEG-1900)) activated with cyanuric acid (activated PEG) by four different methods. In the two methods, anti-BSA antibodies were modified with activated PEG with and without protection of antigen binding sites with BSA and then were coupled to CNBr-activated Sepharose 4B. In the other two methods, Immunoadsorbents, which were prepared by coupling anti-BSA antibodies to CNBr-activated Sepharose 4B, were modified with activated PEG with and without the protection. The effects of PEG modification by these four methods on the binding ratio (the ratio of the numbers of moles of antigen adsorbed to the numbers of moles of binding sites of antibody coupled), the antigen binding property and the resistance to proteolytic digestion of immunoadsorbents were studied. The decrease in the binding ratio by the modification with activated PEG was small enough to use modified immunoadsorbents for industrial purification processes. The resistance to proteolytic digestion of immunoadsorbents was improved by modification with activated PEG. The modification without protection of antigen binding sites gave higher resistance to proteolytic digestion than that with protection, while the former caused larger decrease in the binding ratio of modification. The immunoadsorbents modified with activated PEG-5000 showed higher resistance to proteolytic digestion than those modified with activated PEG-1900.  相似文献   

9.
Lin S  Du F  Wang Y  Ji S  Liang D  Yu L  Li Z 《Biomacromolecules》2008,9(1):109-115
Intelligent gene delivery systems based on physiologically triggered reversible shielding technology have evinced enormous interest due to their potential in vivo applications. In the present work, an acid-labile block copolymer consisting of poly(ethylene glycol) and poly(2-(dimethylamino)ethyl methacrylate) segments connected through a cyclic ortho ester linkage (PEG- a-PDMAEMA) was synthesized by atom transfer radical polymerization of DMAEMA using a PEG macroinitiator with an acid-cleavable end group. PEG- a-PDMAEMA condensed with plasmid DNA formed polyplex nanoparticles with an acid-triggered reversible PEG shield. The pH-dependent shielding/deshielding effect of PEG chains on the polyplex particles were evaluated by zeta potential and size measurements. At pH 7.4, polyplexes generated from PEG- a-PDMAEMA exhibited smaller particle size, lower surface charge, reduced interaction with erythrocytes, and less cytotoxicity compared to PDMAEMA-derived polyplexes. At pH 5.0, zeta potential of polyplexes formed from PEG- a-PDMAEMA increased, leveled up after 2 h of incubation and gradual aggregation occurred in the presence of bovine serum albumin (BSA). In contrast, the stably shielded polyplexes formed by DNA and an acid-stable block copolymer, PEG- b-PDMAEMA, did not change in size and zeta potential in 6 h. In vitro transfection efficiency of the acid-labile copolymer greatly increased after 6 h incubation at pH 5.0, approaching the same level of PDMAEMA, whereas there was only slight increase in efficiency for the stable copolymer, PEG- b-PDMAEMA.  相似文献   

10.
Tissue factor, a 45-kilodalton membrane glycoprotein, is an essential cofactor for the plasma serine protease factor VII which activates factor X in the first step of the extrinsic coagulation cascade. Two adjacent lysine residues (numbers 165 and 166) were identified in the extracytoplasmic domain of tissue factor that are crucial for function. Site-directed mutagenesis of both lysines to alanines results in complete loss of activity. Mutation of either lysine alone results in a molecule which is much more sensitive to the phospholipid composition of the activating surface than the wild-type molecule. It is postulated that interactions between the extracytoplasmic domain of tissue factor and the membrane surface are necessary for bound factor VII or VIIa to assume a conformation capable of efficient catalysis.  相似文献   

11.
The cell surface receptor tissue factor (TF) initiates coagulation by supporting the proteolytic activation of factors X and IX as well as VII to active serine proteases. Architectural similarity of TF to the cytokine receptor family suggests a strand-loop-strand structure for TF residues 151-174. Site-directed Ala exchanges in the predicted surface loop demonstrated that residues Tyr157, Lys159, Ser163, Gly164, Lys165, and Lys166 are important for function. Addition of side chain atoms at the Ser162 position decreased function, whereas the Ala exchange was tolerated. The dysfunctional mutants bound VII with high affinity and fully supported the catalysis of small peptidyl substrates by the mutant TF.VIIa complex. Lys159-->Ala substitution was compatible with efficient activation of factor X, whereas the Try157-->Ala exchange and mutations in the carboxyl aspect of the predicted loop resulted in diminished activation of factor X. The specific plasma procoagulant activity of all functionally deficient mutants increased 7- to 200-fold upon the supplementation of VIIa suggesting that TF residues 157-167 also provide important interactions that accelerate the activation of VII to VIIa. These data are consistent with assignment of the TF 157-167 region as contributing to protein substrate recognition and cleavage by the TF.VIIa complex.  相似文献   

12.
The main contribution of the presented work was to introduce the use of proteases modified with the soluble polymer polyethylene glycol (PEG) in the bio-finishing process of wool fibres, to target enzyme action to the outer parts of wool fibres, i.e. to avoid the diffusion and consequent destroying of the inner parts of the wool fibre structure, in the case of native proteases using.

Different proteolytic enzymes from Bacillus lentus and Bacillus subtilis in native and PEG-modified forms were investigated and their influence on the modification of wool fibres morphology surface, chemical structure, as well as the hydrolysis of wool proteins, the physico-mechanical properties, and the sorption properties of 1:2 metal complex dye during dyeing were studied. SEM images of wool fibres confirmed smoother and cleaner fibre surfaces without fibre damages using PEG-modified proteases. Modified enzyme products have a benefit effect on the wool fibres felting behaviours (14%) in the case when PEG-modified B. lentus is used, without markedly fibre damage expressed by tensile strength and weight loss of the fibre. Meanwhile the dye exhaustion showed slower but comparable level of dye uptake at the end of the dyeing.  相似文献   


13.
The utility of single-chain Fv proteins as therapeutic agents would be substantially broadened if the circulating lives of these minimal antigen-binding polypeptides were both prolonged and adjustable. Poly(ethylene glycol) (PEG) bioconjugate derivatives of the model single-chain Fv, CC49/218 sFv, were constructed using six different linker chemistries that selectively conjugate either primary amines or carboxylic acid groups. Activated PEG polymers with molecular weights of 2000, 5000, 10 000, 12 000, and 20 000 were included in the sFv bioconjugate evaluation. Additionally, the influence of PEG conjugate geometry in branched PEG strands (U-PEG) and the effect of multimeric PEG-sFv bioconjugates on circulating life and affinity were examined. Although random and extensive PEG polymer conjugations have been achievable in highly active derivatives of the prototypical PEG-enzymes, PEGylation of CC49/218 sFv required stringent adjustment of reaction conditions in order to preserve antigen-binding affinity as measured in either mucin-specific or whole cell immunoassays. Purified bioconjugates with PEG:sFv ratios of 1:1 through 2:1 were identified as promising candidates which exhibit sFv affinity (K(d)) values within 2-fold of the unmodified sFv protein. Interestingly, PEG conjugation to carboxylic acid moieties, using a PEG-hydrazide chemistry, achieved significant activity retention in bioconjugates at a higher PEG:sFv ratio (5:1) than with any of the amine-reactive activated PEG polymers. Prolonged circulating life in mice was demonstrated for each of the PEG conjugates. An increase in PEG polymer length was found to be more effective for serum half-life extension than a corresponding increase in total PEG mass. For example, CC49/218 sFv conjugated to either one strand of PEG-20000, or four strands of PEG-5000, displayed about 20- or 14-fold increased serum half-life, respectively, relative to the unmodified sFv. The demonstrated suitability of established random conjugation chemistries for PEGylation of sFv proteins, in conjunction with innovative site-specific conjugation methods, indicates that production of a panoply of sFv proteins with both engineered affinity and tailored circulating life may now be achievable.  相似文献   

14.
In this Letter, we describe the synthesis of several nonamidine analogs of biaryl acid factor VIIa inhibitor 1 containing weakly basic or nonbasic P1 groups. 2-Aminoisoquinoline was found to be an excellent surrogate for the benzamidine group (compound 2) wherein potent inhibition of factor VIIa is maintained relative to most other related serine proteases. In an unanticipated result, the m-benzamide P1 (compounds 21a and 21b) proved to be a viable benzamidine replacement, albeit with a 20–40 fold loss in potency against factor VIIa.  相似文献   

15.
Factor VIIa is a plasma glycoprotein which, when bound to the integral membrane glycoprotein tissue factor, forms an enzymatic complex that is essential for normal hemostasis. We have developed a fluorescent substrate (6-(Mes-D-Leu-Gly-Arg)amino-1-naphthalenediethylsulfamide) which can be used to directly measure the enzymatic activity of factor VIIa in the presence and absence of tissue factor and phospholipid. The sensitivity of this substrate allows for detection of factor VIIa at concentrations below 10(-9) M. The kinetics of substrate hydrolysis by factor VIIa were evaluated and it was observed that the binding of factor VIIa to tissue factor increases the catalytic efficiency (kcat/Km) of factor VIIa substrate hydrolysis greater than 100-fold. The increase in enzymatic efficiency of factor VIIa, when complexed to tissue factor, is mediated primarily by an increase in kcat. These data suggest that tissue factor induces an alteration in the catalytic site of factor VIIa, which allows for more efficient hydrolysis of the small fluorescent substrate. Measurements conducted using various phospholipids and detergents demonstrated that the increase in catalytic efficiency of factor VIIa, when complexed to tissue factor, is independent of the supporting surface. The differential rate of substrate hydrolysis when factor VIIa is complexed to tissue factor was used to estimate the binding of factor VIIa to tissue factor. From these data an apparent dissociation constant for factor VIIa binding to tissue factor was calculated to be between 1.1 and 2.1 nM with a binding stoichiometry of 1.04:1 (factor VIIa:tissue factor). When the reactivity of this small fluorescent substrate toward single-chain factor VII was investigated, both in the presence and absence of tissue factor, no substrate hydrolysis was observed.  相似文献   

16.
We designed a simple and sensitive method to assay the activity of the factor VIIa-tissue factor complex, using as a substrate N alpha-benzyloxycarbonyl-L-arginine p-nitrobenzyl ester (Z-Arg-ONb) (Zur, M., and Nemerson, Y. (1978) J. Biol. Chem. 253, 2203-2209). The principle was to measure the amount of p-nitrobenzyl alcohol released during ester hydrolysis using reversed-phase high performance liquid chromatography. Z-Arg-ONb had a broad specificity for plasma serine proteases and factor IXa. Using this method, we examined the effect of tissue factor on the esterase activity of factor VIIa under various conditions. We found that tissue factor greatly potentiates the factor VIIa-catalyzed hydrolysis of Z-Arg-ONb. Phospholipids were not required for the factor VIIa-catalyzed hydrolysis of Z-Arg-ONb, even in the presence of tissue factor. The Km value of factor VIIa alone toward the ester substrate was six times higher than that of a VIIa-tissue factor complex (3.2 versus 0.54 mM), whereas the kcat value was 12 times lower than that of the VIIa-tissue factor complex (14.3 versus 173 s-1). Thus, tissue factor apparently affects the catalytic site of factor VIIa and enhances hydrolysis of the ester substrate. This enhancing effect of tissue factor disappeared on removal of the gamma-carboxyglutamic acid domain from factor VIIa, whereas the esterase activity in the absence of tissue factor was not affected by this modification. The gamma-carboxyglutamic acid domain is probably required as a potent determinant for interactions with tissue factor, even in the absence of phospholipids in the reaction mixture.  相似文献   

17.
Tissue factor is the cell membrane-anchored cofactor for factor VIIa and triggers the coagulation reactions. The initial step is the conversion of factor VII to factor VIIa which, in vitro, is efficiently catalyzed by low concentrations of factor Xa. To identify the tissue factor region that interacts with the activator factor Xa during this process, we evaluated a panel of soluble tissue factor (1-219) mutants for their ability to support factor Xa-mediated activation of factor VII. The tissue factor residues identified as most important for this interaction (Tyr157, Lys159, Ser163, Gly164, Lys165, Lys166, and Tyr185) were identical to those found to be important for the interaction of substrate factor X with the tissue factor.factor VIIa complex. The residues form a continuous surface-exposed patch with an area of about 500 A(2), which appears to be located outside the tissue factor-factor VII contact zone. In agreement, the two monoclonal antibodies 5G6 and D3H44-F(ab')(2), whose epitopes overlap with this identified region, inhibited the rates of factor VII activation by 86% and 95%, respectively. These antibodies also strongly inhibited the conversion of (125)I-labeled factor VII when cell membrane-expressed, full-length tissue factor (1-263) was employed. Together the results suggest the usage of a common surface region of tissue factor in its dual role-as a cofactor for factor Xa-mediated factor VII activation and as a cofactor for factor VIIa-mediated factor X activation. The finding that factor Xa and factor X may engage in similar, if not identical, molecular interactions with tissue factor further indicates that factor Xa and factor X are similarly oriented toward their respective interaction partners in the ternary catalytic complexes.  相似文献   

18.
T Nakagaki  D C Foster  K L Berkner  W Kisiel 《Biochemistry》1991,30(45):10819-10824
Previous studies demonstrated proteolytic activation of human blood coagulation factor VII by an unidentified protease following complex formation with tissue factor expressed on the surface of a human bladder carcinoma cell line (J82). In the present study, an active-site mutant human factor VII cDNA (Ser344----Ala) has been constructed, subcloned, and expressed in baby hamster kidney cells. Mutant factor VII was purified to homogeneity in a single step from serum-free culture supernatants by immunoaffinity column chromatography. Mutant factor VII was fully carboxylated, possessed no apparent clotting activity, and was indistinguishable from plasma factor VII by SDS-PAGE. Cell binding studies indicated that mutant factor VII bound to J82 tissue factor with essentially the same affinity as plasma factor VII and was cleaved by factor Xa at the same rate as plasma factor VII. In contrast to radiolabeled single-chain plasma factor VII that was progressively converted to two-chain factor VIIa on J82 monolayers, mutant factor VII was not cleaved following complex formation with J82 tissue factor. Incubation of radiolabeled mutant factor VII with J82 cells in the presence of recombinant factor VIIa resulted in the time-dependent and tissue factor dependent conversion of single-chain mutant factor VII to two-chain mutant factor VIIa. Plasma levels of antithrombin III had no discernible effect on the factor VIIa catalyzed activation of factor VII on J82 cell-surface tissue factor but completely blocked this reaction catalyzed by factor Xa. These results are consistent with an autocatalytic mechanism of factor VII activation following complex formation with cell-surface tissue factor, which may play an important role in the initiation of extrinsic coagulation in normal hemostasis.  相似文献   

19.
An IgM monoclonal antibody (AGP3) against polyethylene glycol (PEG) was used to assay PEG-modified proteins by ELISA. PEG-modified beta-glucuronidase could be measured at concentrations as low as 15 ng/mL, corresponding to 750 pg (1.8 fmol) of conjugate. This ELISA should be generally applicable to all PEG-modified proteins because AGP3 binds the backbone of the PEG chain independent of the linker used for PEG attachment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号