首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunohistochemical localization of Met-enkephalin, Met-enkephalin-Arg6-Gly7-Leu8, Met-enkephalin-Arg6-Phe7 and Leu-enkephalin was studied in human adrenal medulla and pheochromocytomas at the light and electron microscopic levels. Both adrenal medulla and pheochromocytomas (4 adrenal, 1 extra-adrenal) showed scattered or clustered cells which contained all of the above peptides and suggested the production of proenkephalin A. The presence of these peptides predominantly in the secretory granules suggested that proenkephalin A is processed to final products mainly in the secretory granules. The localization of Met-enkephalin-Arg6-Gly7-Leu8 and Met-enkephalin-Arg6-Phe7 in cisternae of rough endoplasmic reticula indicated their actual production in pheochromocytomas.  相似文献   

2.
V Y Hook 《Life sciences》1990,47(13):1135-1139
Carboxypeptidase H (CPH) is one of the later enzymes in the cascade of proteolytic steps required for the posttranslational processing of peptide hormone precursors, including processing of proenkephalin. In this study, CPH activity in the soluble and membrane fractions of enkephalin-containing bovine chromaffin granules was competitively inhibited by its products arginine and lysine. Ki values for arginine and lysine were 4.6 +/- 1.3 and 7.6 +/- 1.9 mM, respectively, indicating that arginine was a more effective inhibitor than lysine. Other amino acids (at 10 mM) had no effect. The in vivo intragranular concentrations of lysine and arginine are similar to the measured Ki values, indicating that product inhibition of CPH by basic amino acids may occur in vivo.  相似文献   

3.
The distribution of cryptic forms (larger enkephalin-containing peptides) in neostriatum, hypothalamus, spinal cord T3-L1 and neurointermediate lobe of pituitary were determined by radioimmunoassay. Optimal conditions for enzymic hydrolysis of the cryptic enkephalins by trypsin and carboxypeptidase B were established. The proportion of total Met- and Leu-enkephalin represented by native pentapeptide varied markedly among these central nervous system regions. Also, the distributions of native and cryptic Met-enkephalin were distinct from that of Leu-enkephalin. Chromatographic separation by HPLC of immunoreactive Met-enkephalin peptides revealed only two peaks corresponding to Met-enkephalin and Met-enkephalin sulfoxide in rather equal amounts. Hydrolysis of cryptic Met-enkephalin also produced only two HPLC-separable peaks of immunoreactive Met-enkephalin, again corresponding to Met-enkephalin and Met-enkephalin sulfoxide. Bioactivity of cryptic striatal Met-enkephalin after hydrolysis was demonstrated by antinociception and catalepsy in rats following its intracerebroven-tricular injection. Repeated short-term administration of nicotine, 0.1 mg/kg IP six times at 30 min intervals, produced significant increases in native and cryptic Met-enkephalin in striatum, consistent with an increase in neuronal release of Met-enkephalin together with increases in synthesis and processing of proenkephalin A in this brain region. This regimen of nicotine also decreased levels of native Met-enkephalin and of both native and cryptic Leu-enkephalin in neurointermediate lobe, consistent with nicotine-induced release of both proenkephalin A- and prodynorphin-derived peptides from neurointermediate lobe.  相似文献   

4.
The presence of peptides in pure cultures of neurons from 8-day-old chick embryo cerebral hemispheres has been investigated by means of specific radioimmunoassays and chromatographic purification. Somatostatin, Met-enkephalin, Leu-enkephalin, and substance P immunoreactive substances have been detected in 8-day-old cultures grown in serum-free culture medium. The peptides were present in the cellular extracts, as well as in the culture medium extracts. beta-Endorphin, thyroliberin, luteinizing hormone-releasing hormone, and ACTH could not be detected. The largest amount was accounted by somatostatin (48 +/- 2 ng/mg protein). Some 60% of the somatostatin-immunoreactive material was found in the culture medium. Met-enkephalin, Leu-enkephalin, and substance P were present at lower concentrations: 1.61 +/- 0.27, 0.24 +/- 0.02, and 0.14 +/- 0.005 ng/mg protein, respectively. The identities of somatostatin- and enkephalin-immunoreactive materials were confirmed by high pressure liquid chromatography. The findings suggest that cultured neurons that express dopaminergic and GABAergic properties contain peptides similar, if not identical, to somatostatin, Met-enkephalin, Leu-enkephalin, and substance P.  相似文献   

5.
A dipeptidyl carboxypeptidase activity has been localized in synaptic plasma membranes which have been prepared from isolated rat brain cortical synaptosomes. The specificity of this proteolytic activity towards various synthetic and biological active peptides is compared to the peptidase activities of intact synaptosomes. In contrast to the synaptosomal peptidases which are capable of cleaving all peptide bonds of Met-enkephalin-Arg6-Phe7 the peptidase activity associated with the synaptic plasma membrane exclusively hydrolyses a dipeptide from the carboxyl terminus of all hepta- and hexapeptides tested. The fact that this dipeptidyl carboxypeptidase does not cleave the Gly3-Phe4 peptide bond of Met-enkephalin suggests that this enzyme is different from "enkephalinase". The synaptic membrane dipeptidyl carboxypeptidase is inhibited by metal chelating agents and thiols but is not affected by compounds known to inhibit serine proteases, thermolysin and "enkephalinase".  相似文献   

6.
Prolyl endopeptidase cleaves peptide bonds on the carboxyl side of proline residues within a peptide chain. The enzyme readily degrades a number of neuropeptides including substance P, neurotensin, thyrotropin-releasing hormone, and luteinizing hormone-releasing hormone. The finding that the enzyme is inhibited by benzyloxycarbonyl-prolyl-proline, with a Ki of 50 microM, prompted the synthesis of benzyloxycarbonyl-prolyl-prolinal as a potential transition state analog inhibitor. Rabbit brain prolyl endopeptidase was purified to homogeneity for these studies. The aldehyde was found to be a remarkably potent inhibitor of prolyl endopeptidase with a Ki of 14 nM. This Ki is more than 3000 times lower than that of the corresponding acid or alcohol. By analogy with other transition state inhibitors, it can be assumed that binding of the prolinal residue to the S1 subsite and the formation of a hemiacetal with the active serine of the enzyme greatly contribute to the potency of inhibition. The specificity of the inhibitor is indicated by the finding that a variety of proteases were not affected at concentrations 150 times greater than the Ki for prolyl endopeptidase. The data indicate that benzyloxycarbonyl-prolyl-prolinal is a specific and potent inhibitor of prolyl endopeptidase and that consequently it should be of value in in vivo studies on the physiological role of the enzyme.  相似文献   

7.
8.
Carboxypeptidase A-catalyzed hydrolysis of peptides and depsipeptides is competitively inhibited by N-(1-carboxy-5-t-butyloxycarbonylaminopentyl)-L-phenylalanine (Boc-CA-Phe, Ki = 1.3 microM) and the angiotensin converting enzyme inhibitor, N-(1-carboxy-5-carbobenzoxyaminopentyl)-glycyl-L-phenylalanine (Z-CA-Gly-Phe, Ki = 4.5 microM). The latter compound is actually a slow substrate of carboxypeptidase. Indirect observation of inhibitor binding by stopped-flow measurement of radiationless energy transfer between carboxypeptidase tryptophans and dansylated substrates reveals slow binding for both compounds. The visible absorption spectrum of the complex of cobalt(II)-substituted carboxypeptidase and Z-CA-Gly-Phe, which differs from the corresponding spectrum of the Boc-CA-Phe complex, is remarkable in its resemblance to the spectrum of the complex between Co(II)carboxypeptidase and a transient intermediate previously observed during hydrolysis of peptide substrates. The spectrum slowly changes to that of the free enzyme indicating hydrolysis. Chromatographic quantitation of substrate and products confirms that carboxypeptidase converts Z-CA-Gly-Phe to Z-CA-Gly and L-Phe with an apparent kcat of 0.02 s-1. Absorption spectroscopy indicates that the Z-CA-Gly-Phe-Co(II)carboxypeptidase spectrum is not that of bound products. Moreover, spectral titrations indicate that the products (both with spectral Ki values of about 3 mM), as well as D-Phe, compete for the same site on the enzyme.  相似文献   

9.
Processing of Proenkephalin in Adrenal Chromaffin Cells   总被引:1,自引:0,他引:1  
The processing of proenkephalin was studied using [35S]methionine pulse-chase techniques in primary cultures of bovine adrenal medullary chromaffin cells. Following radiolabeling, proenkephalin-derived peptides were extracted from the cells and separated by reverse-phase HPLC. Fractions containing proenkephalin fragments were digested with trypsin and carboxypeptidase B to liberate Met-enkephalin sequences and subjected to a second HPLC step to demonstrate association of radiolabel with Met-enkephalin. Processing of proenkephalin is complete within 2 h of synthesis, suggesting completion at or soon after incorporation into storage vesicles. Pretreatment of the cells with nicotine, histamine, or vasoactive intestinal peptide to enhance the rate of proenkephalin synthesis failed to alter the time course of processing and had minimal effects on the distribution of products formed. Addition of tetrabenazine, an inhibitor of catecholamine uptake into chromaffin vesicles, during radiolabeling and a 6-h chase period caused enhanced proenkephalin processing. These results suggest that the full range of proenkephalin fragments normally found in the adrenal medulla (up to 23.3 kDa) represents final processing products of the tissue and that termination of processing may depend on the co-storage of catecholamines.  相似文献   

10.
T C Friedman  T B Kline  S Wilk 《Biochemistry》1985,24(15):3907-3913
Pyroglutamyl-peptide hydrolase (EC 3.4.11.8) removes the N-terminal pyroglutamyl residue from pyroglutamyl-containing peptides such as thyrotropin-releasing hormone (TRH), luteinizing hormone-releasing hormone (LH-RH), neurotensin, and bombesin. The aldehyde analogue of pyroglutamate, 5-oxoprolinal, was synthesized as an active site directed transition-state inhibitor of the enzyme. 5-Oxoprolinal was found to be a potent (Ki = 26 nM) and specific competitive inhibitor of pyroglutamyl-peptide hydrolase. Other aldehydes tested inhibited the enzyme only weakly or not at all. 5-Oxoprolinal blocked the degradation of LH-RH by purified pyroglutamyl-peptide hydrolase. The inhibitor, when injected into mice, inhibited the enzyme after 10 and 30 min. 5-Oxoprolinal should be of value in studies probing the biological significance of pyroglutamyl-peptide hydrolase.  相似文献   

11.
M Morris  J A Wren  D K Sundberg 《Peptides》1981,2(2):207-211
Hypothalamic and neurophypophyseal levels of catecholamines and peptides were measured in spontaneous and deoxycorticosterone (DOCA)/salt hypertension. Catecholamines, norepinephrine, epinephrine and dopamine were measured by electrochemical detection while the peptides, vasopressin, oxytocin, luteinizing hormone-releasing hormone (LHRH), the enkephalins and somatostatin (SRIF) were measured by radioimmunoassay. Blood pressure was significantly elevated in both groups as compared to their controls. Marked changes in central neural peptides were observed in the SHR, while no differences were seen in DOCA/salt hypertension. Hypothalamic vasopressin, oxytocin, LHRH and SRIF were significantly decreased. In the posterior pituitary, enkephalins were increased twofold in the SHR. With regard to catecholamines, there was no change in hypothalamic content. However, a dramatic decrease in neurohypophyseal dopamine was observed in SHR. Plasma levels of vasopressin were significantly elevated in both types of hypertension while oxytocin was increased only in the DOCA/salt model. These result show that (1) a wide spectrum of neuroendocrine changes are associated with genetic hypertension, (2) there are CNS differences between DOCA/salt and spontaneous hypertension, and (3) central aminergic changes may be involved in th neuroendocrine alterations seen in the SHR.  相似文献   

12.
Systematic analysis of the hydrolysis of benzyloxycarbonyl (Cbz)-dipeptides by cathepsin A [EC 3.4.12.1] purified from rat liver lysosomes showed that multiple forms of cathepsin A preferentially cleave peptide bonds with leucine, methionine, and phenylalanine. Cbz-Met-Met, -Met-Phe, -Phe-Met, and -Phe-Ala were hydrolyzed 6 to 8 times faster than the standard substrates, Cbz-Glu-Phe and Cbz-Glu-Tyr. The pH optima of the hydrolyses were 4.6 to 5.8. Hydrolysis of peptide bonds with glycine, isoleucine, and proline was very slow, but the rate depended on the nature of the adjacent amino acids. Proteins such as albumin, cytochrome c, gamma-globulin, hemoglobin, histone, myoglobin, and myosin were scarecely degraded. Peptide hormones, such as glucagon and adrenocorticotropic hormone (ACTH) were hydrolyzed markedly with optimum pH's of 4.5 and 4.6, respectively. Angiotensin I, II, bradykinin, Lys- and Met-Lysbradykinin (kallidin and Met-kallidin), and substance P were also hydrolyzed at appreciable rates. pH optima for these peptide hormones were 5.2 to 5.6. On the other hand, insulin and its A chain, luteinizing hormone-releasing hormone (LH-RH), oxytocin and vasopressin were cleaved slowly. In the hydrolyses of glucagon and other peptides, multiple forms of rat liver lysosomal cathepsin A again showed a carboxypeptidase nature, cleaving peptide bonds sequentially from the carboxyl terminal. Almost all of the amino acids were cleaved on prolonged incubation. Vaso-activites of angiotensin II and bradykinin were rapidly lost on hydrolysis by cathepsin A. Lysosomal cathepsin C [dipeptidylaminopeptidase I, EC 3.4.14.1] also activated angiotensin II, but did not inactive bradykinin. Cathepsin A, therefore, can be regarded as one of the lysosomal angiotensinases and kinases. No distinct differences were observed between the multiple forms of cathepsin A in these hydrolyses and inactivations of peptides.  相似文献   

13.
Summary To elucidate the role of hypothalamic neuropeptides in regulation of reproductive phenomena of seasonally breeding feral mammals, we used Japanese long-fingered bats, Miniopterus schreibersii fuliginosus, for immunocytochemical study of distribution of the following neuropeptides in the hypothalamus: arginin vasopressin, oxytocin, luteinizing hormone-releasing hormone, somatostatin, corticotropin-releasing factor, and growth hormone-releasing factor. The size, shape and location of supraoptic, paraventricular, suprachiasmatic, and arcuate nuclei of the bat were determined. Arginin vasopressin-and oxytocin-immunoreactive magnocellular neurons were found in the supraoptic and paraventricular nuclei, where they exhibited separate distribution into two distinct groups. Parvocellular arginin vasopressin neurons occurred only in the suprachiasmatic nucleus. The hibernating bats exhibited slightly increased numbers of vasopressin and oxytocin neurons in the supraoptic and paraventricular nuclei. The pregnant bat displayed further increased numbers of vasopressin and oxytocin neurons in both nuclei. Somatostatin-immunoreactive neurons in the paraventricular nucleus were also immunopositive to anti-oxytocin serum, while those in the ventromedial and arcuate nuclei reacted solely to anti-somatostatin serum. They projected to the anterior median eminence and infundibular stalk. Luteinizing hormone-releasing hormone-immunoreactive perikarya were scattered throughout the basal hypothalamus, being particularly abundant in the arcuate nucleus. They were larger in size in hibernating bats than those in normal (non-pregnant) and pregnant females. They projected fibers mainly to the internal layer of the median eminence and infundibular stalk. A few luteinizing hormone-releasing hormone-reactive fibers were also observed in the organum vasculosum laminae terminalis, lateral habenular nuclei, pineal stalk, retroflexus fasciculus, and olfactory tubercle. Corticotropin releasing factor-immunoreactive perikarya were distributed in the paraventricular nucleus and medial preoptic area and projected into the external layer of the anterior median eminence, while growth hormone-releasing factor-immunoreactive perikarya occurred only in the arcuate nucleus and projected into the posterior part of the median eminence.  相似文献   

14.
S Ogawa  L M Kow  D W Pfaff 《Peptides》1992,13(5):965-975
Certain neuropeptides can facilitate lordosis by acting on midbrain periaqueductal gray (PAG) in estrogen-primed female rats. Here, we investigated responses of individual PAG neurons in vitro, to five neuropeptides: substance P (SP), luteinizing hormone-releasing hormone (LHRH), prolactin (PRL), oxytocin (OT), and thyrotropin-releasing hormone (TRH). Substance P, OT, and TRH excited spontaneous activity of PAG neurons through neurotransmitter-like actions in a dose-dependent manner, whereas LHRH and PRL virtually never affected PAG neurons this way. Oxytocin acted through oxytocin receptors located on the recorded PAG neurons, since excitatory actions of OT were 1) not abolished by synaptic blockade, 2) mimicked by the OT-specific agonist [Thr4, Gly7]OT but not by arginine vasopressin, and 3) blocked by the OT-specific antagonist [d(CH2)5,Tyr(Me)2,Orn8]vasotocin. Although LHRH had no neurotransmitter-like action on spontaneous activity of PAG neurons, it, as well as SP, could modulate responses of some dorsal PAG neurons to GABAA and GABAB agonists or norepinephrine. Neuromodulatory actions of LHRH and SP could help facilitate lordosis through PAG neurons.  相似文献   

15.
Post-translationally introduced dehydroamino acids often play an important role in the activity and receptor specificity of biologically active peptides. In addition, a dehydroamino acid can be coupled to a cysteine to yield a cyclized peptide with increased biostability and resistance against proteolytic degradation and/or modified specificity. The lantibiotic nisin is an antimicrobial peptide produced by Lactococcus lactis. Its post-translational enzymatic modification involves NisB-mediated dehydration of serines and threonines and NisC-catalyzed coupling of cysteines to dehydroresidues, followed by NisT-mediated secretion. Here, we demonstrate that a L. lactis strain containing the nisBTC genes effectively dehydrates and secretes a wide range of medically relevant nonlantibiotic peptides among which variants of adrenocorticotropic hormone, vasopressin, an inhibitor of tripeptidyl peptidase II, enkephalin, luteinizing hormone-releasing hormone, angiotensin, and erythropoietin. For most of these peptides, ring formation was demonstrated. These data show that lantibiotic enzymes can be applied for the modification of peptides, thereby enabling the biotechnological production of dehydroresidue-containing and/or thioether-bridged therapeutic peptides with enhanced stability and/or modulated activities.  相似文献   

16.
The pituitaries of transgenic mice that express a metallothionein-somatostatin fusion gene contain high concentrations of somatostatin-14 exclusively in the gonadotrophic cells. The purpose of this study was to determine whether somatostatin expressed from the foreign fusion gene enters the normal secretory pathway within these cells. Immuno-gold labeling of serial thin sections localized somatostatin to the secretory granules of gonadotropin-producing cells. The gonadotroph-specific hypophysiotropic factor, luteinizing hormone-releasing hormone caused a dose-dependent secretion of somatostatin when applied to primary pituitary cultures from these mice. Growth hormone-releasing hormone, thyrotropin-releasing hormone, corticotropin releasing factor, and dopamine did not affect somatostatin secretion. These experiments demonstrate that a neurosecretory peptide encoded by a foreign gene can enter the regulated secretory pathway of pituitary cells from transgenic mice.  相似文献   

17.
By means of double immunolabeling procedures it has been possible to demonstrate glucocorticoid receptor (GR) immunoreactivity (IR) in large numbers of various peptidergic neurons of the brain including neurons containing gastrointestinal peptides, opioid peptides, and peptides with a hypothalamic hormone function. For each peptide system, however, marked heterogeneities exist among brain regions. Thus, in the neocortex and the hippocampal formation most of the brain peptide neurons lack GR IR, while the same types of peptide neurons in the arcuate and paraventricular nucleus [e.g. neuropeptide Y (NPY), somatostatin (SRIF) and the cholecystokinin (CCK) neurons] possess strong GR IR. Furthermore, in the arcuate, parvocellular part of the paraventricular nuclei and the central amygdaloid nucleus practically all the peptidergic neurons are strongly GR IR, while in the lateral hypothalamus, mainly the neurotensin (NT) and galanin (GAL) IR neurons are GR IR. These marked differences among areas probably reflect functional differences dependent upon their participation in stress regulated circuits. All the paraventricular NT, corticotropin-releasing factor (CRF), growth hormone-releasing factor (GRF), thyrotropin-releasing hormone (TRH) and SRIF IR neurons appear to contain GR IR, while the luteinizing hormone-releasing hormone (LHRH) IR neurons lack GR IR, underlying the importance of glucocorticoids (GC) in controlling endocrine function. Finally, the GC may influence pain and mood control mainly via effects on enkephalin (ENK) neurons especially in the basal ganglia (mood) and on all beta-endorphin (beta-END) neurons of the arcuate nucleus, while most of the dynorphin neurons are not directly controlled by GC.  相似文献   

18.
Carboxypeptidase H is a putative post-translational processing enzyme which removes basic amino acid residues from intermediates during protein hormone biosynthesis. A 2.2-kilobase pair cDNA was shown to contain the complete amino acid sequence of rat carboxypeptidase H. The deduced amino acid sequence revealed that the enzyme was synthesized as preprocarboxypeptidase H, a precursor form of 476 amino acid residues. Preprocarboxypeptidase H contained a putative hydrophobic signal peptide and a short propeptide which contained 5 adjacent Arg residues at its C terminus. Northern blot analysis identified a single carboxypeptidase H mRNA of approximately 2.3 kilobases in brain, pituitary, and heart, as well as in mouse AtT20 cells. No carboxypeptidase H mRNA was detected in rat liver, spleen, kidney, lung, and mammary gland. Sequence analysis of cDNAs obtained from different rat tissues suggested that a single mRNA encodes an identical carboxypeptidase in several tissues. Treatment of AtT20 cells with dexamethasone decreased the levels of both carboxypeptidase H and preproopiomelanocortin (POMC) mRNAs by approximately 30%. Exposure of the dexamethasone-treated cells to corticotropin-releasing factor effected a 2- to 3-fold increase in the carboxypeptidase H and POMC mRNA levels relative to those of dexamethasone-treated cells exposed to control medium. This suggests that the mRNA levels of POMC and one of its putative post-translational processing enzymes, carboxypeptidase H, are co-regulated by corticotropin-releasing factor and steroid hormones.  相似文献   

19.
A dipeptidyl carboxypeptidase, which cleaved the Gly3-Phe4 bond of enkephalins, was purified from guinea pig serum 420-fold. The optimum pH of the enzyme was in the neutral range (pH 7.25), and the molecular weight was estimated to be approx. 280,000. The enzyme hydrolyzed Met- and Leu-enkephalin with Km values of 0.30 and 0.50 mM, respectively. The enzyme was inhibited by metal chelators and p-chloro-mercuribenzoate. Captopril showed high inhibitory potency, while phosphoramidon and Phe-Ala showed no effect on the enzyme activity. Therefore, the obtained enzyme can be classified as an angiotensin-converting enzyme (EC 3.4.15.1). Among the bioactive peptides examined, bradykinin and angiotensin I were hydrolyzed by the enzyme. Angiotensin III showed a stronger inhibitory effect than that of angiotensin II. Substance P, gastrin I, and secretin were also inhibitory toward the enzyme activity. On high-performance liquid chromatography analysis, Met-enkephalin-Arg6-Phe7 and Leu-enkephalin-Arg6 were cleaved sequentially at the second peptide bond of the C terminus. Thus, the dipeptidyl carboxypeptidase in guinea pig serum may play a role not only in the angiotensin-bradykinin system but also in the metabolism of circulating enkephalins and other bioactive peptides.  相似文献   

20.
The effects of a number of peptides which are found in the gastrointestinal tract have been ascertained on the direct current recorded dorsal and ventral root responses of the isolated hemisected toad spinal cord. Motilin, substance P, bombesin, neurotensin, and thyrotropin releasing hormone had potent depolarizing actions on dorsal root terminals and motoneurons. These substances evoked discernable effects at concentrations as low as 10--7 M, or even lower with motilin. The effects of motilin, neurotensin, and thyrotropin-releasing hormone were greatly reduced or abolished by perfusion of the preparation with tetrodotoxin. Adrenocorticotrophic hormone, secretin, and pancreozymin (cholecystokinin) also depolarized dorsal root terminals and motoneurons. The effects of secretin and cholecystokinin were not abolished by tetrodotoxin. Leu- and Met-enkephalin had weak hyperpolarizing actions on the dorsal and ventral root potentials of repetitively stimulated preparations. Gastrin, gastric inhibitory peptide, glucagon, and somatostatin had no apparent effects on the responses of the preparation. Angiotensin and vasopressin both had rather weak depolarizing effects on the dorsal and ventral roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号