首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Galactolipids rule in seed plants   总被引:1,自引:0,他引:1  
Chloroplast membranes contain high levels of the galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG). The isolation of the genes involved in the biosynthesis of MGDG and DGDG, and the identification of galactolipid-deficient Arabidopsis mutants has greatly facilitated the analysis of galactolipid biosynthesis and function. Galactolipids are found in X-ray structures of photosynthetic complexes, suggesting a direct role in photosynthesis. Furthermore, galactolipids can substitute for phospholipids, as suggested by increases in the galactolipid:phospholipid ratio after phosphate deprivation. The ratio of MGDG to DGDG is also crucial for the physical phase of thylakoid membranes and might be regulated.  相似文献   

3.

Key message

With phosphate deficiency, the role of phosphatidylglycerol is compensated by increased glycolipid content in thylakoid membrane biogenesis but not photosynthetic electron transport in Arabidopsis chloroplasts.

Abstract

In plants and cyanobacteria, anionic phosphatidylglycerol (PG) is the only major phospholipid in thylakoid membranes, where neutral galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are predominant. In addition to provide a lipid bilayer matrix, PG plays a specific role in photosynthetic electron transport. Non-phosphorous sulfoquinovosyldiacylglycerol (SQDG) is another anionic lipid in thylakoids; it substitutes for PG under phosphate (Pi) deficiency to maintain proper balance of anionic charge in thylakoid membranes. Although the crucial role of PG in photosynthesis has been deeply analyzed in cyanobacteria, its physiological function in seed plants other than photosynthesis remains unclear. To reveal specific roles of PG and functional overlaps with other thylakoid lipids, we characterized a PG-deficient Arabidopsis mutant (pgp1-2) under Pi-controlled conditions. Under Pi-sufficient conditions, the proportion of PG and other thylakoid lipids was decreased in pgp1-2, which led to severe disruption of thylakoid membrane biogenesis. Under Pi-deficient conditions, the proportion of all glycolipids in the mutant was greatly increased, with that of PG further decreased. In Pi-deficient pgp1-2, thylakoid membranes remarkably developed, which was accompanied by a change in nucleoid morphology and restored expression of nuclear- and plastid-encoded photosynthesis genes. Increase in glycolipid content with Pi deficiency may compensate for the loss of PG in terms of thylakoid membrane biogenesis. Although Pi deficiency increased chlorophyll and photosynthesis protein content in pgp1-2, it critically decreased photochemical activity in PSII. Further deprivation of PG in photosynthesis complexes may abolish the PSII activity in Pi-deficient pgp1-2, which suggests that glycolipids cannot replace PG in photosynthesis.
  相似文献   

4.
Galactolipids such as monogalactosyldiacylglycerol and digalactosyldiacylglycerol are essential lipids for the proper functioning of photosynthetic membranes. However, the function of galactolipids in flowers is unknown. Previously, we reported that pistils have higher galactolipid-producing activity than leaves. The present study investigated galactolipid biosynthesis in pistils in more detail using Petunia hybrida and Lilium longiflorum. The results showed that digalactosyldiacylglycerol levels increased during flower development. In addition, the galactose incorporation activity into galactolipids was induced, suggesting that the pathway for the production of digalactosyldiacylglycerol was stimulated. Interestingly, a significant increase in galactolipids was also observed in elongated pollen tubes. Therefore, pistils are the main site of galactolipid biosynthesis and whose galactolipid biosynthesis activity is induced during flower development, and this induction includes considerable galactolipid biosynthesis in pollen tubes.  相似文献   

5.
The thylakoid membranes of the chloroplast harbor the photosynthetic machinery that converts light into chemical energy. Chloroplast membranes are unique in their lipid makeup, which is dominated by the galactolipids mono‐ and digalactosyldiacylglycerol (MGDG and DGDG). The most abundant galactolipid, MGDG, is assembled through both plastid and endoplasmic reticulum (ER) pathways in Arabidopsis, resulting in distinguishable molecular lipid species. Phosphatidic acid (PA) is the first glycerolipid formed by the plastid galactolipid biosynthetic pathway. It is converted to substrate diacylglycerol (DAG) for MGDG Synthase (MGD1) which adds to it a galactose from UDP‐Gal. The enzymatic reactions yielding these galactolipids have been well established. However, auxiliary or regulatory factors are largely unknown. We identified a predicted rhomboid‐like protease 10 (RBL10), located in plastids of Arabidopsis thaliana, that affects galactolipid biosynthesis likely through intramembrane proteolysis. Plants with T‐DNA disruptions in RBL10 have greatly decreased 16:3 (acyl carbons:double bonds) and increased 18:3 acyl chain abundance in MGDG of leaves. Additionally, rbl10‐1 mutants show reduced [14C]–acetate incorporation into MGDG during pulse?chase labeling, indicating a reduced flux through the plastid galactolipid biosynthesis pathway. While plastid MGDG biosynthesis is blocked in rbl10‐1 mutants, they are capable of synthesizing PA, as well as producing normal amounts of MGDG by compensating with ER‐derived lipid precursors. These findings link this predicted protease to the utilization of PA for plastid galactolipid biosynthesis potentially revealing a regulatory mechanism in chloroplasts.  相似文献   

6.
Green and white leaves of the barley mutant line `albostrians' were compared for their polar lipid content and fatty acid composition. The mutant plastids of the white leaves have a double-layered envelope, but in contrast with the normal chloroplasts, lack 70 S ribosomes and thylakoids. In the green leaves, the amount of monogalactosyldiacylglycerol (MGDG) consistently exceeds the amount of digalactosyldiacylglycerol (DGDG) and the amount of galactolipids exceeds the amount of phospholipids. In contrast, in white leaves the amount of DGDG exceeds the amount of MGDG and the amount of phospholipids exceeds the amount of galactolipids. In white leaves, the galactolipid composition reflects the plastid envelope composition which is rich in DGDG, whereas in green leaves the galactolipid composition reflects the thylakoid composition which is rich in MGDG. These results demonstrate the likelihood that all the enzymes involved in galactolipid, sulfolipid and fatty acid synthesis are coded by the nuclear genome.  相似文献   

7.
In cyanobacteria and chloroplasts, thylakoids are the complex internal membrane system where the light reactions of oxygenic photosynthesis occur. In plant chloroplasts, thylakoids are differentiated into a highly interconnected system of stacked grana and unstacked stroma membranes. In contrast, in cyanobacteria, the evolutionary progenitors of chloroplasts, thylakoids do not routinely form stacked and unstacked regions, and the architecture of the thylakoid membrane systems is only now being described in detail in these organisms. We used electron tomography to examine the thylakoid membrane systems in one cyanobacterium, Cyanothece sp. ATCC 51142. Our data showed that thylakoids form a complicated branched network with a rudimentary quasi-helical architecture in this organism. A well accepted helical model of grana-stroma architecture of plant thylakoids describes an organization in which stroma thylakoids wind around stacked granum in right-handed spirals. Here we present data showing that the simplified helical architecture in Cyanothece 51142 is lefthanded in nature. We propose a model comparing the thylakoid membranes in plants and this cyanobacterium in which the system in Cyanothece 51142 is composed of non-stacked membranes linked by fret-like connections to other membrane components of the system in a limited left-handed arrangement.Key words: cyanobacteria, Cyanothece 51142, thylakoid membrane, electron tomography, chloroplast  相似文献   

8.
The transmembrane distribution of monogalactosyldiacylglycerol and digalactosyldiacylglycerol was determined in chloroplast thylakoids from a range of temperate climate plants. These plants included dicotyledons, monocotyledons, C16:3 and C18:3 plants and herbicide-resistant species. In all the thylakoids examined monogalactosyldiacylglycerol was enriched in the outer leaflet (53–65%) while digalactosyldiacylglycerol was highly enriched in the inner leaflet (78–90%). The non-bilayer forming monogalactosyldiacylglycerol represented 55–81% of the total acyl lipids of the outer monolayer. The relative acyl lipid composition of both leaflets of the thylakoid membrane indicates that the lamellar structure is strongly favored in the inner monolayer, whereas the outer one presents a metastable character which allows the probable coexistence of both lamellar and non-lamellar phases. The consequence of this asymmetry for the stability and function of the thylakoid membrane is discussed.  相似文献   

9.
The galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the predominant lipids in thylakoid membranes and indispensable for photosynthesis. Among the three isoforms that catalyze MGDG synthesis in Arabidopsis thaliana, MGD1 is responsible for most galactolipid synthesis in chloroplasts, whereas MGD2 and MGD3 are required for DGDG accumulation during phosphate (Pi) starvation. A null mutant of Arabidopsis MGD1 (mgd12), which lacks both galactolipids and shows a severe defect in chloroplast biogenesis under nutrient‐sufficient conditions, accumulated large amounts of DGDG, with a strong induction of MGD2/3 expression, during Pi starvation. In plastids of Pi‐starved mgd1‐2 leaves, biogenesis of thylakoid‐like internal membranes, occasionally associated with invagination of the inner envelope, was observed, together with chlorophyll accumulation. Moreover, the mutant accumulated photosynthetic membrane proteins upon Pi starvation, indicating a compensation for MGD1 deficiency by Pi stress‐induced galactolipid biosynthesis. However, photosynthetic activity in the mutant was still abolished, and light‐harvesting/photosystem core complexes were improperly formed, suggesting a requirement for MGDG for proper assembly of these complexes. During Pi starvation, distribution of plastid nucleoids changed concomitantly with internal membrane biogenesis in the mgd1‐2 mutant. Moreover, the reduced expression of nuclear‐ and plastid‐encoded photosynthetic genes observed in the mgd1‐2 mutant under Pi‐sufficient conditions was restored after Pi starvation. In contrast, Pi starvation had no such positive effects in mutants lacking chlorophyll biosynthesis. These observations demonstrate that galactolipid biosynthesis and subsequent membrane biogenesis inside the plastid strongly influence nucleoid distribution and the expression of both plastid‐ and nuclear‐encoded photosynthetic genes, independently of photosynthesis.  相似文献   

10.
The study investigated the effect of the thylakoid membrane lipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulphoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG) on the structure of two algal light‐harvesting complexes (LHCs). In contrast to higher plants whose thylakoid membranes are characterized by an enrichment of the neutral galactolipids MGDG and DGDG, both the green alga Mantoniella squamata and the centric diatom Thalassiosira pseudonana contain membranes with a high content of the negatively charged lipids SQDG and PG. The algal thylakoids do not show the typical grana–stroma differentiation of higher plants but a regular arrangement. To analyze the effect of the membrane lipids, the fucoxanthin chlorophyll protein (FCP) complex of T. pseudonana and the LHC of M. squamata (MLHC) were prepared by successive cation precipitation using Triton X‐100 as detergent. With this method, it is possible to isolate LHCs with a reduced amount of associated lipids in an aggregated state. The results from 77 K fluorescence and photon correlation spectroscopy show that neither the neutral galactolipids nor the negatively charged lipids are able to significantly alter the aggregation state of the FCP or the MLHC. This is in contrast to higher plants where SQDG and PG lead to a strong disaggregation of the LHCII whereas MGDG and DGDG induce the formation of large macroaggregates. The results indicate that LHCs which are integrated into thylakoid membranes with a high amount of negatively charged lipids and a regular arrangement are less sensitive to lipid‐induced structural alterations than their counterparts in membranes enriched in neutral lipids with a grana–stroma differentiation.  相似文献   

11.
Role of signal peptides in targeting of proteins in cyanobacteria.   总被引:3,自引:2,他引:3       下载免费PDF全文
Proteins of cyanobacteria may be transported across one of two membrane systems: the typical eubacterial cell envelope (consisting of an inner membrane, periplasmic space, and an outer membrane) and the photosynthetic thylakoids. To investigate the role of signal peptides in targeting in cyanobacteria, Synechococcus sp. strain PCC 7942 was transformed with vectors carrying the chloramphenicol acetyltransferase reporter gene fused to coding sequences for one of four different signal peptides. These included signal peptides of two proteins of periplasmic space origin (one from Escherichia coli and the other from Synechococcus sp. strain PCC 7942) and two other signal peptides of proteins located in the thylakoid lumen (one from a cyanobacterium and the other from a higher plant). The location of the gene fusion products expressed in Synechococcus sp. strain PCC 7942 was determined by a chloramphenicol acetyltransferase enzyme-linked immunosorbent assay of subcellular fractions. The distribution pattern for gene fusions with periplasmic signal peptides was different from that of gene fusions with thylakoid lumen signal peptides. Primary sequence analysis revealed conserved features in the thylakoid lumen signal peptides that were absent from the periplasmic signal peptides. These results suggest the importance of the signal peptide in protein targeting in cyanobacteria and point to the presence of signal peptide features conserved between chloroplasts and cyanobacteria for targeting of proteins to the thylakoid lumen.  相似文献   

12.
The thylakoid membrane is mainly composed of non-common lipids, so called galactolipids. Despite the importance of these lipids for the function of the photosynthetic reaction centers, the molecular organization of these membranes is largely unexplored. Here we use multiscale molecular dynamics simulations to characterize the thylakoid membrane of both cyanobacteria and higher plants. We consider mixtures of up to five different galactolipids plus phosphatidylglycerol to represent these complex membranes. We find that the different lipids generally mix well, although nanoscale heterogeneities are observed especially in case of the plant membrane. The fluidity of the cyanobacterial membrane is markedly reduced compared to the plant membrane, even considering elevated temperatures at which thermophilic cyanobacteria are found. We also find that the plant membrane more readily undergoes a phase transformation to an inverted hexagonal phase. We furthermore characterized the conformation and dynamics of the cofactors plastoquinone and plastoquinol, revealing of the fast flip-flop rates for the non-reduced form. Together, our results provide a molecular view on the dynamical organization of the thylakoid membrane.  相似文献   

13.
Glycoglycerolipids are abundant membrane components in the photosynthetic tissues of plants and in cyanobacteria, with highly conserved structures (galactolipids). In non-photosynthetic bacteria, glycoglycerolipids are also widespread but with higher structural diversity. They are synthesized by the action of glycosyltransferases (GT), which transfers a glycosyl unit from a sugar nucleotide donor to diacylglycerol to form monoglycosyldiacylglycerol followed by a second transfer to give diglycosyldiacylglycerol. Both transferase activities are catalysed by different GT enzymes in plants, and many bacteria; however, processive enzymes, in which a single GT transfers the first and second (and eventually more) glycosyl units are also found in some bacteria. In this review, we summarize the diversity of glycosyltransferases involved in glycolipid biosynthesis in bacteria, focussing on mycoplasma enzymes and comparing processive and non-processive glycolipid synthases. Since glycoglycerolipids are key structural components of the plasma membrane in mycoplasmas, the glycolipid synthases involved in their biosynthesis are proposed as targets for the design of new antibiotics against mycoplasma infections.  相似文献   

14.
Purified thylakoid membranes from the cyanobacterium Synechocystis sp. PCC 6803 were used for the first time in proteomic studies. The membranes were prepared by a combination of sucrose density centrifugation and aqueous polymer two-phase partitioning. In total, 76 different proteins were identified from 2- and 1-D gels by MALDI-TOF MS analysis. Twelve of the identified proteins have a predicted Sec/Tat signal peptide. Fourteen of the proteins were known, or predicted to be, integral membrane proteins. Among the proteins identified were subunits of the well-characterized thylakoid membrane constituents Photosystem I and II, ATP synthase, cytochrome b6f-complex, NADH dehydrogenase, and phycobilisome complex. In addition, novel thylakoid membrane proteins, both integral and peripheral were found, including enzymes involved in protein folding and pigment biosynthesis. The latter were the chlorophyll biosynthesis enzymes, light-dependent protochlorophyllide reductase and geranylgeranyl reductase as well as phytoene desaturase involved in carotenoid biosynthesis and a water-soluble carotenoid-binding protein. Interestingly, in view of the protein sorting mechanism in cyanobacteria, one of the two signal peptidases type I of Synechocystis was found in the thylakoid membrane, whereas the second one has been identified previously in the plasma membrane. Sixteen proteins are hypothetical proteins with unknown function.  相似文献   

15.
Cyanobacteria, descendants of the endosymbiont that gave rise to modern-day chloroplasts, are vital contributors to global biological energy conversion processes. A thorough understanding of the physiology of cyanobacteria requires detailed knowledge of these organisms at the level of cellular architecture and organization. In these prokaryotes, the large membrane protein complexes of the photosynthetic and respiratory electron transport chains function in the intracellular thylakoid membranes. Like plants, the architecture of the thylakoid membranes in cyanobacteria has direct impact on cellular bioenergetics, protein transport, and molecular trafficking. However, whole-cell thylakoid organization in cyanobacteria is not well understood. Here we present, by using electron tomography, an in-depth analysis of the architecture of the thylakoid membranes in a unicellular cyanobacterium, Cyanothece sp. ATCC 51142. Based on the results of three-dimensional tomographic reconstructions of near-entire cells, we determined that the thylakoids in Cyanothece 51142 form a dense and complex network that extends throughout the entire cell. This thylakoid membrane network is formed from the branching and splitting of membranes and encloses a single lumenal space. The entire thylakoid network spirals as a peripheral ring of membranes around the cell, an organization that has not previously been described in a cyanobacterium. Within the thylakoid membrane network are areas of quasi-helical arrangement with similarities to the thylakoid membrane system in chloroplasts. This cyanobacterial thylakoid arrangement is an efficient means of packing a large volume of membranes in the cell while optimizing intracellular transport and trafficking.  相似文献   

16.
Thylakoid membranes contain the redox active complexes catalyzing the light-dependent reactions of photosynthesis in cyanobacteria, algae and plants. Crude thylakoid membranes or purified photosystems from different organisms have previously been utilized for generation of electrical power and/or fuels. Here we investigate the electron transferability from thylakoid preparations from plants or the cyanobacterium Synechocystis. We show that upon illumination, crude Synechocystis thylakoids can reduce cytochrome c. In addition, this crude preparation can transfer electrons to a graphite electrode, producing an unmediated photocurrent of 15 μA/cm2. Photocurrent could be obtained in the presence of the PSII inhibitor DCMU, indicating that the source of electrons is QA, the primary Photosystem II acceptor. In contrast, thylakoids purified from plants could not reduce cyt c, nor produced a photocurrent in the photocell in the presence of DCMU. The production of significant photocurrent (100 μA/cm2) from plant thylakoids required the addition of the soluble electron mediator DCBQ. Furthermore, we demonstrate that use of crude thylakoids from the D1-K238E mutant in Synechocystis resulted in improved electron transferability, increasing the direct photocurrent to 35 μA/cm2. Applying the analogous mutation to tobacco plants did not achieve an equivalent effect. While electron abstraction from crude thylakoids of cyanobacteria or plants is feasible, we conclude that the site of the abstraction of the electrons from the thylakoids, the architecture of the thylakoid preparations influence the site of the electron abstraction, as well as the transfer pathway to the electrode. This dictates the use of different strategies for production of sustainable electrical current from photosynthetic thylakoid membranes of cyanobacteria or higher plants.  相似文献   

17.
Three-dimensional ultrastructure of a unicellular cyanobacterium   总被引:3,自引:0,他引:3       下载免费PDF全文
The first complete three-dimensional ultrastructural reconstruction of a cyanobacterium was accomplished with high-voltage electron microscopy and computer-aided assembly of serial sections. The precise arrangement of subcellular features within the cell body was very consistent from one cell to another. Specialized inclusion bodies always occupied specific intracellular locations. The photosynthetic thylakoid membranes entirely surrounded the central portion of the cytoplasm, thereby compartmentalizing it from the rest of the cell. The thylakoid membranes formed an interconnecting network of concentric shells, merging only at the inner surface of the cytoplasmic membrane. The thylakoids were in contact with the cytoplasmic membrane at several locations, apparently to maintain the overall configuration of the thylakoid system. These results clarified several unresolved issues regarding structure-function relationships in cyanobacteria.  相似文献   

18.
Changes in the amounts of thylakoid galactolipids and proteins were monitored for 96 hours following iron resupply to iron-deficient sugar beet (Beta vulgaris L. cv F58-554H1) plants. During this period of iron nutrition-mediated chloroplast development, the amount of galactolipid per leaf area increased linearly with time. Assuming galactolipids are an index for the amount of thylakoids, then there was a linear synthesis of thylakoid membranes during regreening. Total thylakoid protein synthesis, however, lagged behind galactolipid synthesis, suggesting that proteins are inserted secondarily into the galactolipid matrix of the thylakoid membrane during development.

Iron deficiency caused an increase in the free chlorophyll band under the conditions of gel electrophoresis used. Of the chlorophyll proteins resolved, the chlorophyll protein associated with photosystem I was most diminished in iron-deficient tissue, and appeared to recover most rapidly. Changes in the light-harvesting chlorophyll proteins are also discussed.

The number of polypeptides resolved by lithium dodecyl sulfate-polyacrylamide gel electrophoresis was higher in iron-deficient thylakoids. During regreening, the number of resolved polypeptides decreased.

  相似文献   

19.
An ATP- and temperature-dependent transfer of monogalactosylglycerides from the chloroplast envelope to the chloroplast thylakoids was reconstituted in a cell-free system prepared from isolated chloroplasts of garden pea (Pisum sativum) or spinach (Spinacia oleracea). Isolated envelope membranes, in which the label was present exclusively in monogalactosylglycerides, were prepared radiolabeled in vitro with [14C]galactose from UDP-[14C]galactose to label galactolipids as the donor. ATP-dependent transfer of radioactivity from donor to unlabeled acceptor thylakoids, immobilized on nitrocellulose strips, was observed. In some experiments linear transfer for longer than 30 min of incubation was facilitated by the addition of stroma proteins but in other experiments stroma was without effect or inhibitory suggesting no absolute requirements for a soluble protein carrier. Transfer was donor specific. No membrane fraction tested (plasma membrane, tonoplast, endoplasmic reticulum, nuclei, Golgi apparatus, mitochondria or thylakoids) (isolated from tissue radiolabeled in vivo with [14C]acetate) other than chloroplast envelopes demonstrated any significant ability to transfer labeled membrane lipids to immobilized thylakoids. Acceptor specificity, while not absolute, showed a 3-10-fold greater ATP-dependent transfer of labeled galactolipids from chloroplast envelopes to immobilized thylakoids than to other leaf membranes. The results provide independent confirmation of the potential for transfer of galactolipids between chloroplast envelopes and thylakoids suggested previously from ultrastructural studies and of the known location of thylakoid galactolipid biosynthetic activities in the chloroplast envelope.  相似文献   

20.
The plant galactolipids, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), are the most abundant lipids in chloroplast membranes, and they constitute the majority of total membrane lipids in plants. MGDG is synthesized by two types of MGDG synthase, type-A (MGD1) and type-B (MGD2, MGD3). These MGDG synthases have distinct roles in Arabidopsis. In photosynthetic organs, Type A MGD is responsible for the bulk of MGDG synthesis, whereas Type B MGD is expressed in non-photosynthetic organs such as roots and flowers and mainly contributes to DGDG accumulation under phosphate deficiency. Similar to MGDG synthesis, DGDG is synthesized by two synthases, DGD1 and DGD2; DGD1 is responsible for the majority of DGDG synthesis, whereas DGD2 makes its main contribution under phosphate deficiency. These galactolipid synthases are regulated by light, plant hormones, redox state, phosphatidic acid levels, and various stress conditions such as drought and nutrient limitation. Maintaining the appropriate ratio of these two galactolipids in chloroplasts is important for stabilizing thylakoid membranes and maximizing the efficiency of photosynthesis. Here we review progress made in the last decade towards a better understanding of the pathways regulating plant galactolipid biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号