首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gene encoding α-amino acid ester acyl transferase (AET), the enzyme that catalyzes the peptide-forming reaction from amino acid methyl esters and amino acids, was cloned from Empedobacter brevis ATCC14234 and Sphingobacterium siyangensis AJ2458 and expressed in Escherichia coli. This is the first report on the aet gene. It encodes a polypeptide composed of 616 (ATCC14234) and 619 (AJ2458) amino acids residues. The V(max) values of these recombinant enzymes during the catalysis of L-alanyl-L-glutamine formation from L-alanine methylester and L-glutamine were 1,010 U/mg (ATCC14234) and 1,154 U/mg (AJ2458). An amino acid sequence similarity search revealed 35% (ATCC14234) and 36% (AJ2458) identity with an α-amino acid ester hydrolase from Acetobacter pasteurianus, which contains an active-site serine in the consensus serine enzyme motif, GxSYxG. In the deduced amino acid sequences of AET from both bacteria, the GxSYxG motif was conserved, suggesting that AET is a serine enzyme.  相似文献   

2.
The gene encoding α-amino acid ester acyl transferase (AET), the enzyme that catalyzes the peptide-forming reaction from amino acid methyl esters and amino acids, was cloned from Empedobacter brevis ATCC14234 and Sphingobacterium siyangensis AJ2458 and expressed in Escherichia coli. This is the first report on the aet gene. It encodes a polypeptide composed of 616 (ATCC14234) and 619 (AJ2458) amino acids residues. The V max values of these recombinant enzymes during the catalysis of L-alanyl-L-glutamine formation from L-alanine methylester and L-glutamine were 1,010 U/mg (ATCC14234) and 1,154 U/mg (AJ2458). An amino acid sequence similarity search revealed 35% (ATCC14234) and 36% (AJ2458) identity with an α-amino acid ester hydrolase from Acetobacter pasteurianus, which contains an active-site serine in the consensus serine enzyme motif, GxSYxG. In the deduced amino acid sequences of AET from both bacteria, the GxSYxG motif was conserved, suggesting that AET is a serine enzyme.  相似文献   

3.
The carboxypeptidase Y-catalyzed reaction of acyl transfer of acylamino acid and peptide residues from the corresponding esters to ammonia and to amides of amino acids has been studied, and conditions for obtaining amides of amino acids and peptides with the yields up to 90% found.  相似文献   

4.
Dipeptide synthesis by aminopeptidase from Streptomyces septatus TH-2 (SSAP) was demonstrated using free amino acid as an acyl donor and aminoacyl methyl ester as an acyl acceptor in 98% methanol (MeOH). SSAP retained its activity after more than 100 h in 98% MeOH, and in the case of phenylalanyl-phenylalanine methyl ester synthesis, the enzyme reaction reached equilibrium when more than 50% of the free phenylalanine was converted to the product. In an investigation of the specificity of SSAP toward acyl donors and acyl acceptors, SSAP showed a broad specificity toward various free amino acids and aminoacyl methyl esters. Furthermore, we applied SSAP to the synthesis of several biologically active peptides, such as aspartyl-phenylalanine, alanyl-tyrosine, and valyl-tyrosine methyl esters.  相似文献   

5.
Dipeptide synthesis by aminopeptidase from Streptomyces septatus TH-2 (SSAP) was demonstrated using free amino acid as an acyl donor and aminoacyl methyl ester as an acyl acceptor in 98% methanol (MeOH). SSAP retained its activity after more than 100 h in 98% MeOH, and in the case of phenylalanyl-phenylalanine methyl ester synthesis, the enzyme reaction reached equilibrium when more than 50% of the free phenylalanine was converted to the product. In an investigation of the specificity of SSAP toward acyl donors and acyl acceptors, SSAP showed a broad specificity toward various free amino acids and aminoacyl methyl esters. Furthermore, we applied SSAP to the synthesis of several biologically active peptides, such as aspartyl-phenylalanine, alanyl-tyrosine, and valyl-tyrosine methyl esters.  相似文献   

6.
1. Lactation is associated with an increase in the arterial blood concentration of L-alanine and L-glutamate, but a decrease in that of L-glutamine compared with the corresponding values for virgin rats. 2. Virgin rats fed a 'cafeteria diet' that induces hyperphagia have increased arterial concentrations of L-alanine, L-glutamate and L-glutamine. During lactation L-alanine and L-glutamate concentrations are even higher. 3. The removal of L-alanine is decreased in hepatocytes from lactating rats fed either a chow or cafeteria diet. 4. Measurements of arteriovenous differences across lactating mammary glands indicate that appreciable amounts of L-glutamine and L-alanine are extracted by the gland. 5. A high proportion of the L-alanine metabolized by isolated acini from fed lactating rats is converted into lipid. 6. Metabolism of L-alanine in acini from starved lactating rats is limited by the activity of pyruvate dehydrogenase. 7. It is concluded that L-alanine and certain other amino acids taken up by the gland in excess of the requirements for protein synthesis can be converted into lipid.  相似文献   

7.
Abstract— γ-Glutamyl transpeptidase from bovine choroid plexus has been shown to be a membrane-bound enzyme. Partial purification of the enzyme has been accomplished using detergent extraction and ammonium sulfate fractionation. Important determinants of enzymatic activity with acceptor substrates included chain length, stereoisomerism, and amino acid composition of the acceptors. L-Methionine was the best amino acid substrate and its corresponding peptides L-methionylmethionine and L-methionyl-L-serine were also good γ-glutamyl acceptors. L-Alanine and glycine were poor acceptor substrates; whereas, some peptides containing these amino acids were excellent substrates. Glycylglycine was significantly more effective as a γ-glutamyl acceptor than glycine, triglycine, or tetraglycine. L-Alanylglycine was a superior acceptor to glycine, L-alanine, or L-alanylglycylglycine, while the D-isomer of alanylglycine was only minimally effective as an acceptor substrate. In general glycyl peptides were the best acceptor substrates examined. Our findings that γ-glutamyl transpeptidase could catalyze the transfer of γ-glutamyl groups to glycylglycyl-L-alanine and L-alanylglycylglycine are of special interest, since few examples of tripeptide acceptors for the enzyme have been found. It is suggested that γ-glutamyl transpeptidase might play a role in the inactivation and/or transport of biologically active peptides.  相似文献   

8.
The function of acyl-4-guanidinophenyl esters as substrate mimetics for the serine protease alpha-chymotrypsin was investigated by protein-ligand docking, hydrolysis, and acyl transfer experiments. On the basis of protein-ligand docking studies, the binding and hydrolysis properties of these artificial substrates were estimated. The predictions of the rational approach were confirmed by steady-state hydrolysis studies on 4-guanidinophenyl esters derived from coded amino acids (which alpha-chymotrypsin is not specific for), noncoded amino acids, and even simple carboxylic acid moieties. Enzymatic peptide syntheses qualify these esters as suitable acyl donors for the coupling of acyl components far from the natural enzyme specificity, thus considerably expanding the synthetic utility of alpha-chymotrypsin.  相似文献   

9.
Alanine racemase [EC 5.1.1.1], which catalyzes the interconversion between D- and L-alanine, was purified to homogeneity from the muscle of black tiger prawn Penaeus monodon. The isolated enzyme had a molecular mass of 44 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and 90 kDa on gel filtration, indicating a dimeric nature of the enzyme. The enzyme was highly specific to D- and L-alanine and did not catalyze the racemization of other amino acids. K(m) values toward both D- and L-alanine were almost equal and considerably high compared with those of bacterial enzymes. The purified enzyme retained its activity in the absence of pyridoxal 5'-phosphate as a cofactor but carbonyl reagents inhibited the activity, suggesting the tightly binding of the cofactor to the enzyme protein. Several partial amino acid sequences of peptide fragments of the purified enzyme showed positive homologies from 52 to 76% with bacterial counterparts and a catalytic tyrosine residue of the bacterial enzyme was also retained in the prawn one, indicating alanine racemase gene is well conserved from bacteria to invertebrates.  相似文献   

10.
Acetyl esterases from carbohydrate esterase family 7 exhibit unusual substrate specificity. These proteins catalyze the cleavage of disparate acetate esters with high efficiency, but are unreactive to larger acyl groups. The structural basis for this distinct selectivity profile is unknown. Here, we investigate a thermostable acetyl esterase (TM0077) from Thermotoga maritima using evolutionary relationships, structural information, fluorescent kinetic measurements, and site directed mutagenesis. We measured the kinetic and structural determinants for this specificity using a diverse series of small molecule enzyme substrates, including novel fluorogenic esters. These experiments identified two hydrophobic plasticity residues (Pro228, and Ile276) surrounding the nucleophilic serine that impart this specificity of TM0077 for small, straight-chain esters. Substitution of these residues with alanine imparts broader specificity to TM0077 for the hydrolysis of longer and bulkier esters. Our results suggest the specificity of acetyl esterases have been finely tuned by evolution to catalyze the removal of acetate groups from diverse substrates, but can be modified by focused amino acid substitutions to yield enzymes capable of cleaving larger ester functionalities.  相似文献   

11.
It has recently been shown that fatty acid vinyl esters serve as effective acylating agents for the synthesis of esters by enzymatic transesterification in high yields. To enhance the usefulness of this system at low temperatures, we have searched for the gene coding for a cold-active lipolytic enzyme with a substrate preference for fatty acid vinyl esters and obtained it from the genomic library of Acinetobacter sp. strain no. 6, a psychrotroph isolated from Siberian soil. The gene (termed aelh, 777 bp) encoded a protein of 258 amino acids, and sequence analysis revealed that the enzyme shows a high sequence similarity to β-ketoadipate enol-lactone hydrolase involved in the β-ketoadipate pathway for the bacterial catabolism of benzoic acid. The aelh gene was expressed in the E. coli C600 cells under the control of lac promoter and the expression product was purified to homogeneity and characterized. It was a monomeric esterase preferentially catalyzing the hydrolysis of enol esters, such as fatty acid vinyl esters with a short-chain acyl group. The enzyme was strongly inhibited by phenylmethylsulfonyl fluoride, a specific inhibitor for serine hydrolases. The enzyme could also catalyze transesterification, for example, between vinyl propionate and propanol yielding propyl propionate at 4 °C. These results indicate the usefulness of an esterase (termed AELH) for the enzymatic synthesis of esters by transesterification using vinyl esters as an acyl donor.  相似文献   

12.
The structural properties required for the binding of peptide substrates to the Escherichia coli periplasmic protein involved in oligopeptide transport were surveyed by measuring the ability of different peptides to compete for binding in an equilibrium dialysis assay with the tripeptide Ala-Phe-[3H]Gly. The protein specifically bound oligopeptides and failed to bind amino acids or dipeptides. Acetylation of the peptide amino terminus of (Ala)3 severely impaired binding, whereas esterification of the carboxyl terminus significantly reduced but did not completely eliminate binding. Peptides composed of L-amino acids competed more effectively than did peptides containing D-residues or glycine. Experiments with a series of alanyl peptide homologs demonstrated a decrease in competitive ability with increasing chain length beyond tripeptide. Competition studies with tripeptide homologs indicated that a wide variety of amino acyl side chains were tolerated by the periplasmic protein, but side-chain composition did affect binding. Fluorescence emission data suggested that this periplasmic protein possesses more than one substrate-binding site capable of distinguishing peptides on the basis of amino acyl side chains.  相似文献   

13.
Mammalian sera contain enzymes that catalyze the hydrolytic degradation of peptidoglycans and molecules of related structure and are relevant for the metabolism of peptidoglycans. We now report on a novel L,(L/D)-aminopeptidase found in human and mammalian sera. The enzyme hydrolyses the pentapeptide L-Ala-D-iso-Gln-meso-DAP(omegaNH(2))-D-Ala-D-Ala yielding the free L-alanine and the respective tetrapeptide (K(M) 18 mM). L,(L/D)-aminopeptidase from guinea pig serum was highly purified in four chromatographic steps, up to 700-fold. Molecular weight of the enzyme was estimated by HPLC to be approximately 175,000. The configuration of alanine obtained by hydrolysis of the pentapeptide was determined by oxidation with L-amino acid oxidase. The amino acids sequence in the respective tetrapeptide was deduced from the results of mass spectrometry. The novel L,(L/D)-aminopeptidase also hydrolyzed alanine-4-nitroanilide (K(M)=0.6 mM) and several peptides comprising L-amino acids. Peptides containing D-amino acid at the amino end and L-Asp-L-Asp were not the substrates for this enzyme. The purified enzyme also exhibited enkephalin degrading activity, hydrolyzing enkephalins comprising L,L- and L,D-peptide bonds. The enzyme was inhibited strongly by metal chelating agents, bestatin and amastatin.  相似文献   

14.
Acetyl esterases from carbohydrate esterase family 7 exhibit unusual substrate specificity. These proteins catalyze the cleavage of disparate acetate esters with high efficiency, but are unreactive to larger acyl groups. The structural basis for this distinct selectivity profile is unknown. Here, we investigate a thermostable acetyl esterase (TM0077) from Thermotoga maritima using evolutionary relationships, structural information, fluorescent kinetic measurements, and site directed mutagenesis. We measured the kinetic and structural determinants for this specificity using a diverse series of small molecule enzyme substrates, including novel fluorogenic esters. These experiments identified two hydrophobic plasticity residues (Pro228, and Ile276) surrounding the nucleophilic serine that impart this specificity of TM0077 for small, straight-chain esters. Substitution of these residues with alanine imparts broader specificity to TM0077 for the hydrolysis of longer and bulkier esters. Our results suggest the specificity of acetyl esterases have been finely tuned by evolution to catalyze the removal of acetate groups from diverse substrates, but can be modified by focused amino acid substitutions to yield enzymes capable of cleaving larger ester functionalities.  相似文献   

15.
S Blumberg  B L Vallee 《Biochemistry》1975,14(11):2410-2419
Synthesis of a series of active N-hydroxysuccinimide esters of aliphatic and aromatic amino acids has yielded a new class of reagents for the covalent modification of proteolytic enzymes such as thermolysin. The activities of aliphatic acyl amino acid thermolysins are from 1.7 to 3.6 times greater than that of the native enzyme when hydrolyzing durylacryloyl-Gly-Leu-NH2, the substrate employed most widely. By comparison, the aromatic acylamino acid derivatives are "superactive," their activities being as much as 70-fold greater. Apparently, the aromatic character of the amino acid introduced is a critical variable in the determination of the functional response. The increased activity is completely restored to that of the native enzyme by deacylation with nucleophiles, such as hydroxylamine, and the rate of restoration of native activity is a function of the particular acyl group incorporated. Preliminary evidence regarding the chemical properties of the modified enzyme suggests that tyrosine, rather than lysine, histidine, or arginine, may be the residue modified. The functional consequences of successive modification with different reagents, moreover, indicate that each of them reacts with the same protein residue. The competitive inhibitors beta-phenyl-propionyl-Phe and Zn-2+ do not prevent modification with these active esters. Hence, the site(s) of their inhibitory action differ(s) from that at which modification occurs. The structure of the substrate is also a significant variable which determines the rate at which each acyl amino acid thermolysin hydrolyzes peptides. Depending on the particular substrate, the activity of aromatic derivatives can be as much as 400-fold greater than that of the native enzyme, and the resultant activity patterns can be ordered in a series characteristic for each enzyme derivative.  相似文献   

16.
The ability of hydrolases to catalyze perhydrolysis, i.e. lysis of acyl substrates with hydrogen peroxide to form peroxycarboxylic acids, has been investigated. Lipases, esterases and cholinesterases were found to catalyze perhydrolysis but the preference of the enzymes for hydrogen peroxide relative to water as nucleophile was only 10-100 fold, even in the best cases. Hence, perhydrolysis proceeds with a very low efficiency in aqueous systems. Furthermore, all lipases, esterases and cholinesterases tested degrade peroxycarboxylic acids to the corresponding carboxylic acid and hydrogen peroxide. This reaction is most pronounced in the case of lipases while less so for cholinesterases. Consequently, cholinesterases are superior to the other hydrolases studied in catalyzing net formation of peracids in aqueous systems. In organic solvents, immobilized lipases efficiently catalyze formation of peracids from either triglycerides or the parent carboxylic acid. Proteases and phospholipase A-2 were found to neither degrade peracids nor catalyze perhydrolysis of carboxylic esters or phospholipids, respectively.  相似文献   

17.
Peptide synthesis catalyzed by papain at alkaline pH values   总被引:1,自引:0,他引:1  
The synthesis of peptides in the presence of papain at pH 8-9.5 is described. Starting substances are acylamino acid alkyl esters (the carboxyl component) and amides or tert.-butylesters of amino acids, as well as peptide (the amino component). Under such conditions secondary hydrolysis is not essential, making the synthesis of peptides soluble in aqueous medium. The yield of peptides is 50-94%. The effect of different factors (temperature, solvents, reagent concentrations) on the result of the reaction has been studied. It has been found that an excess of the carboxyl component is expedient to increase the yield of peptides.  相似文献   

18.
Occurrence of a novel γ-glutamyltransferase responsible for the formation of γ-L-glutamyl-D-alanine was demonstrated in pea seedlings, and the enzyme was purified 600-fold. The enzyme preparation catalyzed the transfer of the γ-glutamyl moiety of L-glutamine and other γ-glutamyl compounds to D-amino acids. In the formation of γ-L-glutamyl peptides of D-amino acids, L-glutamine served as the most effective γ-glutamyl donor and D-alanine acted as a highly-specific acceptor. The maximum activity of the γ-glutamyl transfer reaction between L-glutamine and D-alanine was observed at pH 9.5 and the apparent Km values for these amino acids were estimated to be 2.0 and 2.9mM, respectively. This unique γ-glutamyltransferase activity was always accompanied by the catalytic activities of the known γ-glutamyltransferases during the purification procedure.  相似文献   

19.
Catabolic mannopine (MOP) cyclase encoded by certain Agrobacterium Ti and Ri plasmids lactonizes MOP to agropine (AGR). The enzyme, purified to homogeneity from a recombinant clone, has a molecular mass of 45 kDa as measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and size exclusion chromatography. The enzyme catalyzed the lactonization of MOP to AGR without the need for any cofactors. The enzyme also converted AGR to MOP with the lactonizing activity being predominant over the reverse reaction. MOP cyclase is specific for imine conjugates of D-hexose and L-glutamine and was not inhibited by sugars or amino acids. The enzyme lactonized deoxyfructosyl glutamine, a natural intermediate of MOP synthesis and catabolism, to a product indistinguishable from chrysopine, a newly discovered crown gall opine. The enzyme also lactonized N-l-(1,2-dideoxy-D-mannityl)-L-glutamine, indicating that a hydroxyl group at carbon atom 2 of the sugar moiety is not required for the enzymatic reaction.  相似文献   

20.
The substrate specificities of two different molecular sizes of cathepsin A, A,L (large form) and A,S (small form), for synthetic substrates were examined kinetically. Both enzymes showed a similar broad substrate specificity against various acyl dipeptides, amino acid esters, and amino acid amides. Z-Phe-Ala and Ac-Phe-OEt were good substrates. Peptides containing hydrophobic amino acids were hydrolyzed rapidly. The presence of hydrophobic amino acid residues, not only at the C-terminal position but also at the second position and probably the third position from the C-terminal, resulted in an increase in the rate of hydrolysis. Peptides containing glycine and proline were hydrolyzed slowly. Inhibition studies with Z-D-Phe-D-Ala and Z-Phe suggested that the peptidase and esterase activities of the enzymes are both catalyzed by the same site of the enzyme molecule, but it remains to be elucidated whether or not the binding sites for peptides and esters are the same.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号