首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mohamad Hajarine  Michel Lagarde   《Biochimie》1988,70(12):1749-1758
Radiolabeled polyenoic acids were incorporated into human platelet lipids using albumin as vector. Platelets were then triggered with 0.1 or 1 U/ml thrombin, and 0.5 or 2 x 10(-6) M calcium ionophore A23187. Lipid extracts were analyzed for neutral lipids, free fatty acids, monohydroxylated acids, prostanoids and glycocerophospholipid subclasses. During platelet activation induced by thrombin or by ionophore, arachidonic and eicosapentaenoic acids were liberated from phospholipids in large amounts and were subsequently oxygenated via platelet oxygenases. Substantial amounts of lipoxygenase products and thromboxanes were produced from these acids. Liberation and oxygenation of linoleic, alpha-linolenic, and docosahexaenoic acids were much less pronounced. Polyenoic acid liberation from phospholipid subclasses also behaved quite differently. Apart from alpha-linolenic and adrenic acids, which were poorly liberated, all the others were freed from phosphatidylinositol. In addition, arachidonic, eicosapentaenoic, and 5, 8, 11-eicosatrienoic acids were liberated from phosphatidylcholine at high concentrations of agonists and partially reincorporated into phosphatidylethanolamine. Finally, linoleic acid was deacylated from phosphatidylinositol and phosphatidylserine and almost entirely reacylated into phosphatidylcholine, whereas docosahexaenoic acid was deacylated from phosphatidylcholine and phosphatidylinositol reacylated into phosphatidylethanolamine, respectively. It is concluded that these polyenoic acids, all for which modulate platelet functions, exhibit very different metabolisms. They may act via their oxygenated derivatives and/or at the membrane phospholipid level.  相似文献   

2.
The polyenoic fatty acids with carbon chain lengths from 26 to 38 (very-long-chain fatty acids, VLCFA) previously detected in abnormal amounts in Zellweger syndrome brain have been shown to be n-6 derivatives and therefore probably derived by chain elongation of shorter-chain n-6 fatty acids such as linoleic acid and arachidonic acid. Polyenoic VLCFA are also present in Zellweger syndrome liver, but this tissue differs significantly from brain in that the saturated and mono-unsaturated derivatives are the major VLCFA. Zellweger syndrome brain polyenoic VLCFA are present in the neutral lipids predominantly in cholesterol esters, with smaller amounts in the non-esterified fatty acid and triacylglycerol fractions. These fatty acids are barely detectable in any of the major phospholipids, but are present in significant amounts in an unidentified minor phospholipid. The polyenoic VLCFA composition of this lipid differs markedly from that observed for all other lipids, as it contains high proportions of pentaenoic and hexaenoic fatty acids with 34, 36 and 38 carbon atoms. A polar lipid with the chromatographic properties in normal brain contains similar fatty acids. It is postulated that the polyenoic VLCFA may play an important role in normal brain and accumulate in Zellweger syndrome brain because of a deficiency in the peroxisomal beta-oxidation pathway, although a possible peroxisomal role in the control of carbon-chain elongation cannot be discounted.  相似文献   

3.
A lipoxygenase has been found in the reticulocytes of all mammalian species tested so far (rabbit, rat, mouse, monkey, and humans); evidence from in vitro studies suggests that the lipid-peroxidizing effects of this enzyme could render the mitochondrion and other intracellular organelles prone to the proteolytic degradation which is a natural step in development of the reticulocyte to the mature red cell. In this study we sought evidence of an active lipoxygenase in vivo. A bleeding anemia was induced in rabbits, and in the course of the subsequent reticulocytosis the red cell membranes were examined for the presence of the characteristic lipoxygenase products of linoleic and arachidonic acids. Erythrocyte membranes from control collections contained only small amounts of hydroxy fatty acids (0.03-0.08% of the polyenoic fatty acids). In contrast, reticulocyte-enriched red cells contained up to 3.3% of the polyenoic acids as hydroxylated derivatives. The main hydroxy fatty acid in reticulocyte membranes was identified as 13-L(S)-hydroxy-9Z,11E-octadecadienoic acid. Small amounts of other hydroxy derivatives including 15-hydroxy-5,8,11,13-(Z,Z,Z,E)eicosatetraenoic acid were also detected. These products appeared about 3 days after development of reticulocytosis. The precise structures of the hydroxylated polyenoic fatty acids and the time course of their appearance strongly suggest that their formation is due to the intracellular action of the cell-specific reticulocyte lipoxygenase. These findings are the first evidence for an activity of this enzyme in vivo, and the results support the hypothesis that enzymic peroxidation of reticulocyte intracellular membranes is a step in preparation of the intracellular organelles for proteolytic degradation.  相似文献   

4.
Membranes of intact rabbit reticulocytes and rat liver mitochondrial membranes oxygenated by the pure reticulocyte lipoxygenase contain 13-keto-9Z,11E-octadecadienoic acid and 9-keto-10E,12Z-octadecadienoic acid. In mitochondrial membranes not treated with lipoxygenase and in rabbit erythrocyte membranes these products were not detected. The chemical structure of the compounds has been identified by cochromatography with authentic standards on various types of HPLC columns, by uv and ir spectroscopy and GC/MS. In the membranes of rabbit reticulocytes up to 2% of the linoleate residues are present as its 9- and 13-keto derivatives. Most of the keto compounds (up to 90%) are esterified in the membrane ester lipids, only about 10% were found in the free fatty acid fraction. It is proposed that the keto dienoic fatty acids are formed via decomposition of hydroperoxy polyenoic fatty acids originating from the oxygenation of the membrane lipids by the reticulocyte lipoxygenase.  相似文献   

5.
The mechanism of inactivation of lipoxygenases by acetylenic fatty acids   总被引:2,自引:0,他引:2  
The inactivation of soybean lipoxygenase by 5,8,11,14-eicosatetraynoic acid was studied in detail. The inactivation was found to be time-dependent and irreversible. A kinetic scheme, based on the assumption of a rapid inactivation of the enzyme-product complex, yielded a Km value for 5,8,11,14-eicosatetraynoic acid of 1.3 microM, which is about a tenth of that described for arachidonic acid, and a reaction constant k+2 of 0.006s-1, which is four orders of magnitude lower. The reasons for these differences are discussed. Several types of experimental evidence indicate that the first step of the enzyme inactivation is the conversion of 5,8,11,14-eicosatetraynoic acid via a lipoxygenase reaction: (a) the conversion of radioactively labelled methyl ester of 5,8,11,14-eicosatetraynoic acid to other products; (b) the oxygen requirement of the inactivation; (c) the competitive protective effect of linoleic acid; (d) the similarity of the activation energy for both the dioxygenation of linoleic acid and the enzyme inactivation by 5,8,11,14-eicosatetraynoic acid; (e) the formation of one mole methionine sulfoxide/mole enzyme during the reaction with 5,8,11,14-eicosatetraynoic acid, similar to the suicidal reaction of reticulocyte lipoxygenase with 13LS-hydroperoxy-linoleic acid. These results, as well as the lack of covalent binding of 14C-labelled 5,8,11,14-eicosatetraynoic acid methyl ester, contradict the allene mechanism postulated by others [D.T. Downing, D.G. Ahern, and M. Bachta (1970) Biochem. Biophys. Res. Commun. 40, 218-223; K.H. Gibson (1977) Chem. Soc. Rev. 6, 489-510]. It is assumed that the susceptible methionine is located at the active centre of the enzyme.  相似文献   

6.
The generation of slow reacting substance (SRS) from ionophore A23187-stimulated rat peritoneal mast cells was enhanced by arachidonic acid (AA). This SRS generation was inhibited by 5,8,11,14-eicosatetraynoic acid (ETYA), an acetylenic analogue of AA and an inhibitor of both fatty acid cyclooxygenase and lipoxygenase. Indomethacin, a fatty acid cyclooxgenase inhibitor, had an enhancing effect upon SRS generation. This suggests SRS generation occurred through an ETYA sensitive step--perhaps a lipoxygenase. Radiolabel from [14C]-AA was incorporated into SRS with comigration of radioactivity and bioreactivity in silicic acid and thin layer chromatographies. Upon silicic acid chromatography, the active principle was eluted in the methanol fraction. Two-dimensional thin layer chromatography revealed chromatographic separation from other known spasmogenic substances and phospholipids. Mast cell SRS was found to display physiochemical properties similar to those of rat basophilic leukemia cell SRS, namely: that mast cell SRS generation was 1) enhanced by arachidonic acid; 2) inhibited by ETYA but not by indomethacin; 3) incorporation of [14C]-AA into the active principle; and 4) similar behavior during purification in silicic acid and thin layer chromatographies.  相似文献   

7.
Sciadonic acid (20:3 Delta-5,11,14) and juniperonic acid (20:4 Delta-5,11,14,17) are polyunsaturated fatty acids (PUFAs) that lack the Delta-8 double bond of arachidonic acid (20:4 Delta-5,8,11,14) and eicosapentaenoic acid (20:5 Delta-5,8,11,14,17), respectively. Here, we demonstrate that these conifer oil-derived PUFAs are metabolized to essential fatty acids in animal cells. When Swiss 3T3 cells were cultured with sciadonic acid, linoleic acid (18:2 Delta-9,12) accumulated in the cells to an extent dependent on the concentration of sciadonic acid. At the same time, a small amount of 16:2 Delta-7,10 appeared in the cellular lipids. Both 16:2 Delta-7,10 and linoleic acid accumulated in sciadonic acid-supplemented CHO cells, but not in peroxisome-deficient CHO cells. We confirmed that 16:2 Delta-7,10 was effectively elongated to linoleic acid in rat liver microsomes. These results indicate that sciadonic acid was partially degraded to 16:2 Delta-7,10 by two cycles of beta-oxidation in peroxisomes, then elongated to linoleic acid in microsomes. Supplementation of Swiss 3T3 cells with juniperonic acid, an n-3 analogue of sciadonic acid, induced accumulation of alpha-linolenic acid (18:3 Delta-9,12,15) in cellular lipids, suggesting that juniperonic acid was metabolized in a similar manner to sciadonic acid. This PUFA remodeling is thought to be a process that converts unsuitable fatty acids into essential fatty acids required by animals.  相似文献   

8.
Rat hepatocytes in primary culture were incubated with a mixture of linoleic and arachidonic acid at various total fatty acid/serum albumin molar ratios. Mixed fatty acids were taken up at the same rate and distributed with the same pattern as fatty acids added separately. The rates of total uptake, incorporation into hepatocyte and secreted triacylglycerols and beta-oxidation were linearly related to the fatty acid/albumin ratios, whereas the rate of incorporation into phospholipids was saturable. Neither the uptake rate nor the distribution of both fatty acids considered together varied with the arachidonic acid/linoleic acid molar ratio. Changes in this ratio and in the uptake rate led to significant variations in the respective fate of the fatty acids. The preferential channelling of arachidonic acid versus linoleic acid into beta-oxidation and phosphatidylinositol was greatest at a low uptake rate and then decreased as the uptake rose. Conversely, the preferential channelling of arachidonic acid versus linoleic acid into phosphatidylcholine, but not phosphatidylethanolamine, increased with the uptake rate. Moreover, both arachidonic acid and linoleic acid were preferentially incorporated into the 1-palmitoyl molecular species of phosphatidylcholine and phosphatidylethanolamine at a low uptake rate, and of phosphatidylcholine at a high uptake rate. This could be related to the synthesis of biliary phosphatidylcholine, of which 1-palmitoyl-2-linoleoyl and 1-palmitoyl-2-arachidonoyl are the main molecular species. Linoleic and arachidonic acid were selectively distributed into distinct metabolic pools of triacylglycerol, the intrahepatocyte pool which preferentially incorporated linoleic acid at a low uptake rate and the secreted pool in which the relative enrichment of arachidonic acid increased with the uptake rate. This strengthens the central role of hepatic secretion in the supply of arachidonic acid to peripheral tissues.  相似文献   

9.
The unsaturated fatty acids that rapidly accumulate during ischemia are thought to participate in inducing irreversible brain injury, especially because they are highly susceptible to peroxidation when the tissue is reoxygenated. Our hypothesis was that peroxidation products of unsaturated fatty acids interfere with the reacylation of synaptic phospholipids, a process essential to membrane repair. To test this hypothesis, we have examined the effect of fatty acid hydroperoxides on incorporation of [1-14C]arachidonic acid into synaptosomal phospholipids. Rat forebrain synaptosomes were incubated with arachidonic or linoleic acid hydroperoxides and [14C]arachidonate, and then lipids were extracted and separated by TLC. Both hydroperoxides inhibited [14C]arachidonate incorporation into phospholipids in a concentration-dependent manner, with 50% inhibition occurring at less than 25 microM hydroperoxide, in both the absence and presence of exogenous lysophospholipids. The inhibition was of the non-competitive type. It is concluded that (a) low levels of fatty acid hydroperoxides inhibit the reacylation of synaptosomal phospholipids, and (b) this inhibition may constitute an important mechanism whereby peroxidative processes contribute to irreversible brain damage.  相似文献   

10.
5,8,11,14-eicosatetraynoic acid (ETYA), a widely used inhibitor of cyclooxygenase and lipoxygenase, inhibited the incorporation of 14C-arachidonic acid into cell lipids of the murine thymoma EL4 whereas oleic acid had no effect. Inhibition appeared to result from the ability of ETYA to compete with arachidonic acid for esterification enzymes and to be itself incorporated into cell lipids. The positional specificity for ETYA incorporation was similar to that of arachidonic acid. ETYA, but not oleic acid competed with arachidonate for activation by a selective arachidonoyl CoA synthetase in lymphocytes. This may explain in part the apparent specificity of effects seen on incorporation into whole cells. In addition ETYA, unlike other arachidonate analogs tested previously, caused significant inhibition of the nonselective acyl CoA synthetase in lymphocytes. These results are discussed with respect to the use of ETYA to examine the role of intrinsic arachidonic acid metabolism in cellular processes.  相似文献   

11.
Monolayers of Caco-2 cells, a human enterocyte cell line, were incubated with [1-14C]15-hydroxyeicosatetraenoic acid (15-HETE), a lipid mediator of inflammation, and [1-14C]arachidonic acid. Both fatty acids were taken up readily and metabolized by Caco-2 cells. [1-14C]Arachidonic acid was directly esterified in cellular phospholipids and, to a lesser extent, in triglycerides. When [1-14C]15-hydroxyeicosatetraenoic acid was incubated with Caco-2 cells, about 10% was directly esterified into cellular lipids but most (55%) was beta-oxidized to ketone bodies, CO2, and acetate, with very little accumulation of shorter carbon chain products of partial beta-oxidation. The radiolabeled acetate generated from beta-oxidation of [1-14C]15-hydroxyeicosatetraenoic acid was incorporated into the synthesis of new fatty acids, primarily [14C]palmitate, which in turn was esterified into cellular phospholipids, with lesser amounts in triglycerides. Caco-2 cells were also incubated with [5,6,8,9,11,12,14,15-3H]15-hydroxyeicosatetraenoic acid; most of the radiolabel was recovered either in ketone bodies or in [3H]palmitate esterified in phospholipids and triglycerides, demonstrating that most of the [3H]15-hydroxyeicosatetraenoic acid underwent several cycles of beta-oxidation. The binding of both 15-hydroxyeicosatetraenoic acid and arachidonic acid to hepatic fatty acid binding protein, the only fatty acid binding protein in Caco-2 cells, was measured. The Kd (6.0 microM) for 15-HETE was three-fold higher than that for arachidonate (2.1 microM).  相似文献   

12.
The incorporation of long-chain fatty acids into phospholipids has been detected in adipocyte ghosts that were incubated with [1-14 C] stearic, [1-14 C] linoleic or [1-14 C] arachidonic acid. Adrenaline and adenosine activated this incorporation within 15 s of exposure of the ghosts to the hormones and the response was dose dependent. Maximum incorporation of labelled linoleic acid occurred at 10(-5) M adrenaline and 10(-7) M adenosine. The alpha-agonist phenylephrine and the beta-agonist isoproterenol were also shown to stimulate the incorporation of fatty acid in a dose dependent manner. Phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and phosphatidylinositol were each labelled preferentially with linoleic or arachidonic acid. p-Bromophenacylbromide, quinacrine and centrophenoxine inhibited the adrenaline-stimulated incorporation of fatty acids into ghost membrane phospholipids, and p-bromophenacylbromide also reduced the activation of adenylate cyclase by adrenaline. NaF, an activator of adenylate cyclase, like adrenaline, stimulated the incorporation of linoleic acid into ghost membrane phospholipids.  相似文献   

13.
The polyunsaturated fatty acid composition of Brugia malayi microfilariae was analyzed by gas chromatography and compared to that of sera from B. malayi-infected jirds. The essential fatty acid, linoleic acid (18:2 omega 6), was the most abundant fatty acid present in both microfilarial total lipids and phospholipids as well as in jird sera. In contrast, arachidonic acid (20:4 omega 6), as well as the 18:3 omega 6, 20:2 omega 6, and 20:3 omega 6 intermediates that are formed in the enzymatic conversion of linoleic acid to arachidonic acid, were proportionally more abundant in microfilariae than in jird sera. To assess the capacity of microfilariae to transform linoleic acid into arachidonic acid, B. malayi microfilariae were incubated with [14C]linoleic acid. Microfilarial lipids were extracted and resolved by high-pressure liquid chromatography and thin-layer chromatography. A portion of [14C]linoleic acid incorporated by microfilariae was converted to [14C]arachidonic acid. Thus, microfilariae can not only incorporate exogenous arachidonic acid, as previously demonstrated, but can also synthesize arachidonic acid from exogenous linoleic acid. The capacity of microfilariae to utilize specific host polyunsaturated fatty acids raises the possibility that intravascular filarial parasites may synthesize eicosanoid metabolites of arachidonic acid that could mediate filarial-host cell interactions.  相似文献   

14.
In studies on the metabolism of polyunsaturated fatty acids, acyl-CoA synthetase for 5,8,11,14-20:4 (arachidonic acid) and 5,8,11,14,17-20:5 (eicosapentaenoic acid) and the incorporation of these fatty acids into complex lipids and their conversion to CO2 were investigated in rat aorta. The activity of acyl-CoA synthetase was 35.9 for arachidonic acid and 63.0 for eicosapentaenoic acid (nmol/mg protein per 10 min) and the apparent Km values were 45 microM for arachidonic acid and 56 microM for eicosapentaenoic acid. Inhibition of eicosapentaenoyl-CoA synthesis by arachidonic acid was stronger than that of arachidonyl-CoA synthesis by eicosapentaenoic acid. Arachidonic acid and eicosapentaenoic acid were mostly incorporated into phospholipids. The incorporation of these fatty acids into cholesterol ester and their conversion to CO2 were less than those of palmitic acid, but their incorporation into triacyglycerol was greater. The incorporation of these fatty acids into phosphatidylserine + phosphatidylinositol and phosphatidylethanolamine was also greater than that of palmitic acid. The patterns of incorporation of arachidonic acid and eicosapentaenoic acid were similar. The physiological roles of these polyunsaturated fatty acids and the interference of eicosapentaenoic acid in arachidonic acid metabolism are discussed on the basis of these results.  相似文献   

15.
The incorporation of (14)C-labelled myristic, palmitic, stearic, oleic and linoleic acids in vitro into the lipids of bovine spermatozoa was measured at intervals from 2min to 2h. All acids were rapidly incorporated into diglycerides, myristic acid being metabolized to the greatest extent. Whereas the low incorporation of acids into total phospholipids reflected the relative stability of the major phospholipid fractions in sperm, the minor phospholipids, particularly phosphatidylinositol, showed comparatively high metabolic activity. Although, in general, saturated acids were incorporated more actively than unsaturated substrates, stearic acid was poorly incorporated into all lipids except phosphatidylinositol. In regard to fatty acid composition of sperm lipids it was notable that diglycerides contained myristic acid as the major component, and this acid was also a prominent moiety of phosphatidylinositol. Docosahexaenoic acid was the principal fatty acid of the major phospholipid classes. These findings have been discussed in relation to the role of lipids in the metabolism of spermatozoa.  相似文献   

16.
Purified reticulocyte lipoxygenase converts arachidonic acid to both 15- and 12-hydroxyperoxyeico-satetraenoic acids. The proportion of the two reaction products does not change during the purification procedure as shown by HPLC analysis. By means of isoelectric focusing it was not possible to separate the n-6 and n-9 activities. Reticulocyte lipoxygenase was completely inactivated by both 5,8,11-eicosatriynoic and 5,8,11,14-eicosatetraynoic acids in contrast to soybean lipoxygenase-1 which was inactivated only by 5,8,11,14-eicosatetraynoic acid. These results indicate that reticulocyte lipoxygenase exhibits both n-6 and n-9 activities. A contamination of the enzyme preparation with other lipoxygenases, e.g., the n-9 lipoxygenase from thrombocytes appears to be excluded.  相似文献   

17.
A procedure for isolating the carotenoid-containing oil droplets of cone retinal photoreceptors of Gallus domesticus is described. The oil droplets, composed almost entirely of neutral lipids and carotenoids, have been separated into ten chromatographic components. Similar separations have been carried out on the total retinal neutral lipids for comparison. The neutral lipids represented 26.1% of the total retinal lipid. Cholesterol, cholesterol ester, mono-, di- and triacylglycerols represented 92.6% of the total neutral lipid. Each of these and other minor neutral lipid components were also present in the lipids extracted from the isolated oil droplets in correspondingly similar concentrations. However, the concentrations of carotenoids were greatly enriched in the neutral lipids of the oil droplets. Each of the major fatty acyl-containing neutral lipids from the chromatography of oil droplet lipids is greatly enriched in polyunsaturated fatty acids when compared with the corresponding component from the total neutral lipid chromatography. In the acylglycerols and free fatty acid fraction from the oil droplets, linoleic and arachidonic acid together represented 52-83% of the total polyunsaturated fatty acids present. The remainder was generally distributed about equally among six other acids. Except for the diacylglycerol fraction, linoleic acid was usually the most enriched acid in a specific oil droplet fraction when compared with any other polyunsaturated fatty acids. A similar pattern of polyunsaturated fatty acid enrichment observed in the fatty acids of the outer segment phospholipids relative to the corresponding total phospholipid fractions of this cone rich retina (Johnston, D. and Hudson, R.A. (1974) Biochim. Biophys. Acta 369, 269) suggest possible metabolic relationships between the oil droplet neutral lipids and the outer segment membrane phospholipids of the cone photoreceptors. A mechanism for the accumulation of the carotenoids in the oil droplets is also discussed.  相似文献   

18.
Phospholipase A2-induced deacylation of membrane phospholipids is associated with changes in membrane fluidity. The importance of this reaction in the pancreatic amylase secretory process was tested using melittin, a phospholipase A2 stimulating peptide. Phospholipase A2 activity (using [3H]arachidonic acid release as an index) and amylase secretion were both increased in a time- and concentration-dependent manner by melittin. Phospholipids prelabelled with [3H]oleic acid or [14C]linoleic acid also released radioactive free fatty acids in response to melittin. Prostaglandin synthesis was not involved in the melittin response, since inhibitors of arachidonic acid oxidation (indomethacin, 5,8,11,14-eicosatetraynoic acid) did not alter the ability of melittin to release [3H]arachidonic acid or amylase. When melittin was co-applied with carbachol, cholecystokinin octapeptide, or vasoactive intestinal peptide, amylase secretion was additive. The effect of melittin on both fatty acid and amylase release was dependent on extracellular calcium, though melittin's effects were not dependent on the intracellular accumulation of second messengers such as calcium or cAMP. The data suggest that activation of phospholipase A2 by melittin results in the triggering of the secretory process in exocrine pancreas by a different mechanism than that for other pancreatic secretagogues.  相似文献   

19.
Rat brain was recently found to contain polyenoic very-long-chain fatty acids (VLCFA) belonging to the n-3 and n-6 series with four, five and six double bonds and even-carbon chain lengths from 24 to 38 [Robinson, Johnson & Poulos (1990) Biochem. J. 265, 763-767]. In the present paper, the metabolism in vivo of hexacosatetraenoic acid (C26:4,n-6) was studied in neonatal rat brain. Rats were injected intracerebrally with [1-14C]C26:4,n-6 and the labelled metabolites were examined after 4 h. Radioactivity was detected mainly in non-esterified fatty acids, with smaller amounts in other neutral lipids and phospholipids. Radiolabelled fatty acid products included C28-36 tetraenoic and C26-28 pentaenoic VLCFA formed by elongation and desaturation of the substrate, and C14-24 saturated, C16-24 monoenoic, C18-24 dienoic, C18-22 trienoic and C20-24 tetraenoic fatty acids formed from released [1-14C]acetate either by synthesis de novo or by elongation of endogenous fatty acids. The data suggest that polyenoic VLCFA are synthesized in brain from shorter-chain precursor fatty acids and undergo beta-oxidation.  相似文献   

20.
The incorporation of [14C]oleic and [14C]linoleic acid into phospholipids and neutral lipids was compared in two recently immortalized airway epithelial cell lines. In addition, the effects of adrenergic stimulation on phospholipid turnover was examined. Both cell lines readily incorporated the fatty acids into all phospholipid and neutral lipid fractions. Isoproterenol (1 microM) induced Ca2+ transients in both cell lines, indicating a functional beta-adrenergic response. Epinephrine (10 microM; 15 min) stimulation of cells prelabeled with [14C]linoleic acid increased the percentage of label in phosphatidylcholine in one cell line. Lipid metabolism can now be extensively studied in human airway epithelia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号