首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several pollen-specific genes from different species have been isolated and characterized at the molecular level, but the precise role of most of them is unknown. Mutant analysis represents a direct approach to uncovering gene function, but the paucity of available mutants affecting pollen development and/or function and the poor characterization of the known mutants have so far limited the exploitation of this approach. Here we present the cytological characterization ofgametophytic male sterile-1 (gaMS-1), a maize mutant that we identified in a program of transposon insertion mutagenesis for the production of mutations in gametophytically acting genes involved in microsporogenesis.gaMS-1 is expressed during or immediately after the first microspore division and leads to the production of immature, nonfunctional pollen grains. The mutation appears to affect the events leading to the developmental switch that follows the first microspore mitosis.  相似文献   

2.
In order to assess the efficiency of male gametophytic selection (MGS) for crop improvement, pollen selection for tolerance to herbicide was applied in maize. The experiment was designed to test the parallel reactivity to Alachlor of pollen and plants grown in controlled conditions or in the field, the response to pollen selection in the sporophytic progeny, the response to a second cycle of MGS, and the transmission of the selected trait to the following generations. The results demonstrated that pollen assay can be used to predict Alachlor tolerance under field conditions and to monitor the response to selection. A positive response to selection applied to pollen in the sporophytic progeny was obtained in diverse genetic backgrounds, indicating that the technique can be generally included in standard breeding programs; the analysis of the data produced in a second selection cycle indicated that the selected trait is maintained in the next generation.  相似文献   

3.
The availability of both pollen and resources can influence natural selection on floral traits, but their relative importance in shaping floral evolution is unclear. We experimentally manipulated pollinator and resource (fertilizer and water) availability in the perennial wildflower Asclepias syriaca L. Nine floral traits, one male fitness component (number of pollinia removed), and two female fitness components (number of pollinia inserted and number of fruits initiated) were measured for plants in each of three treatments (unmanipulated control, decreased pollinator access, and resource supplementation). Although decreasing pollinators’ access to flowers did result in fewer pollinia inserted and removed, fruit set and phenotypic selection on floral traits via female and male fitness did not differ from the control. In contrast, resource supplementation increased fruit set, and phenotypic selection on seven out of nine floral traits was stronger via female than male fitness, consistent with the prediction that selection via female fitness would be greater when reproduction was less resource-limited. Our results support the hypothesis that abiotic resource availability can influence floral evolution by altering gender-specific selection.  相似文献   

4.
Summary The competitive ability of pollen from inbred plants in mixed pollinations in this study is not merely maintained but enhanced through successive generations of selfing. The data presented suggest two conclusions: 1) the possible existence of pollen-stylar interactions during successive selfings, which select for certain pollen genotypes, those best suited for rapid growth through self styles; and 2) the presence of sporophytic vigor in the heterotic F1 sporophyte, or its absence in the depressed F7 sporophyte, is not necessarily demonstrated in the gametophytic generation, perhaps because it can be overwhelmed by other factors, e.g. gametophytic response to selection.  相似文献   

5.
Summary Two-locus theory for recurrent selection for general combining ability in maize was developed. The theory featured: (a) recombination of the selfed progeny of selected parents; and (b) linkage disequilibrium in the initial gametic array. The theory indicated: (a) that initial linkage disequilibrium exerts a permanent influence upon selection progress; (b) that interposition of one or more generations of random mating before each cycle reduces the permanent effect in ensuing cycles; and (c) that random mating done before initiation of selection is more efficient in removing the influence of linkage disequilibrium on selection progress than random mating done between subsequent cycles.  相似文献   

6.
7.
Pollen genotype selection for genes expressed in both the haploid and diploid phases of the plant life cycle can lead to correlated responses detectable in the sporophyte. A pollen selection was conducted in two genetic backgrounds of maize (Zea mays L.) for chlorsulfuron resistance, conferred by the XA17 allele. Plants of two backcross (BC) lines segregating 1 (heterozygote, resistant) : 1 (homozygote, susceptible) for chlorsulfuron resistance were used as pollen donor. Selection treatment was applied during microspore development, and tassels were cut about 10 days before anthesis and placed into a liquid medium with or without 40 mg l–1 of chlorsulfuron. Pollen was used to fertilize an unrelated susceptible genotype (tester). The resulting testcrosses (TC) were evaluated in the greenhouse by spraying seedlings with chlorsulfuron at 23 g ha–1. Non-selected TC progenies derived from heterozygous BC plants showed a proportion of resistant and susceptible plants close to the expected 1:1 ratio, while non-selected TC progenies derived from homozygous BC plants showed susceptible plants only. Selected TC progenies derived from heterozygous BC plants showed a frequency of resistant plants ranging from 89% to 100%. BC plants homozygous for the susceptible allele, subjected to selection treatment, gave poor seed set, and no resistant plants were found in their TC progenies. Resistant TC plants obtained through pollen genotype selection were selfed, and the proportion of resistant plants was close to 3:1 in all selfed families, in accordance with the hypothesis that all of them inherited the XA17 allele through selection. In this study, pollen genotype selection was extremely effective, and its effect persisted in the second sporophytic generation. Received: 19 November 1999 / Accepted: 30 April 2000  相似文献   

8.
Various factors (pollen diameter, in vitro germination and tube length, in vivo growth rate in selfed and nonselfed styles) which could possibly contribute to the competitive ability of pollen were investigated on 30 Zea mays L. inbred lines. The only factor with which pollen diameter was positively correlated was in vitro pollen-tube growth. Traits related to the early stages of growth (in vitro germination, in vitro tube length, early in vivo pollen growth rate) were all positively correlated with each other, and these early characteristics were negatively correlated with late in vivo tube growth rate, which is largely influenced by the stylar genotype.  相似文献   

9.
Plant studies that have investigated the fitness consequences of growing with siblings have found conflicting evidence that can support different theoretical frameworks. Depending on whether siblings or strangers have higher fitness in competition, kin selection, niche partitioning and competitive ability have been invoked. Here, we bring together these processes in a conceptual synthesis and argue that they can be co-occurring. We propose that these processes can be reconciled and argue for a trait-based approach of measuring natural selection instead of the fitness-based approach to the study of sibling competition. This review will improve the understanding of how plants interact socially under competitive situations, and provide a framework for future studies.  相似文献   

10.
Summary Pollen irradiation was tested as a possible means of expediting gene transfer in tomato breeding. The experiment was also designed to examine the possibility that irradiation effects which have been previously reported for Nicotiana were due to gametophytic selection against mutated male and female gametes.Pollen from the wild tomato species Solanum pennellii was irradiated with -rays and used in crosses with Lycopersicon esculentum. Pollen from five M1 hybrid plants and five control hybrids was used in backcrosses to an esculentum variety and the same plant also functioned as female parents in crosses with normal S. pennellii pollen. Seven enzymic gene markers which differ between the species were assayed in the backcross populations in the two directions. Allele frequencies did not differ between the populations that were derived from the M1 or F1 hybrids except for one marker, Pgm-2. Elimination of male and female gametes containing the irradiated parent allele of Pgm-2 was observed in a single population. This gene is located on chromosome 4 close to the gamete eliminator (Ge) locus. A review of some of the main characteristics of Ge raises the possibility of the existence of a controlling element activity.  相似文献   

11.
Two subspecies of Nigella degenii (Ranunculaceae) possess a dimorphism in pollen colour and vary extensively in frequency of the two morphs in natural populations. Here we investigate the role of selection on pollen colour during the pollination phase in the two subspecies and its potential contribution to the maintenance of this colour variation. In a combination of common garden experiments and field observations, we obtained data on pollinator visitation rates and explored the effect of pollen colour on fertilisation success and siring ability under conditions of low vs. high pollen competition. In experimental gardens, naïve pollinators responded differently to plants with different pollen colour, but the favoured morph varied between dates and locations, and colour morphs were not visited in a frequency-dependent manner. Donor plants with dark pollen had a reproductive advantage (higher seed set) in single-donor pollinations, but the realised siring ability (measured by progeny morph ratio) was highly variable between different two-donor crosses with no general bias towards the light or dark morph. Therefore, although the dark pollen type appears to have a general selective advantage in terms of fertilisation success, our data are also consistent with a scenario involving the maintenance of both colour morphs, particularly under conditions of high pollen competition, a variable genetic background and/or spatial or temporal variation in the pollinator fauna.  相似文献   

12.
The objectives of this research were to determine if genes controlling the reaction to the herbicide acetochlor in maize (Zea mays L.) are active during both the haploid and the diploid phases of the life cycle and if pollen selection can be utilized for improving sporophytic resistance. Pollen of eight inbred lines, previously characterized through sporophytic analysis for the level of tolerance to acetochlor, showed a differential reaction to the herbicide forin vitro tube length; moreover, such pollen reactions proved to be significantly correlated (r =0.786*,df=6) with those of the sporophytes producing the pollen. Pollen analysis of two inbred lines (i.e. Mo17, tolerant, and B79, susceptible) and their single cross showed that thein vitro pollen-tube length reaction of the hybrid was intermediate between those of two parents. An experiment on pollen selection was then performed by growing tassels of Mo17xB79 in the presence of the herbicide. Pollen obtained from treated tassels showed a greater tolerance to acetochlor, assessed asin vitro tube length reaction, than pollen obtained from control tassels. Moreover, the backcross [B79 (Mo17xB79)] sporophytic population obtained using pollen from the treated tassels was more tolerant (as indicated by the fresh weight of plants grown in the presence of the herbicide) than was the control backcross population. The two populations did not differ when grown without the herbicide. These findings indicate that genes controlling the reaction to acetochlor in maize have haplodiploid expression; consequently, pollen selection can be applied for improving plant tolerance.  相似文献   

13.
Summary Interspecific pollen competition among Populus deltoides, P. nigra and P. maximowiczii in fertilizing P. deltoides ovules was studied by using a pollen mixture technique, allozymes and leaf morphology. The frequencies of F1 seedlings of different paternities in pollen-mix crosses showed highly significant (P<0.01) departures from the 11 ratio expected if pollen selection was random. P. deltoides pollen was the most competitive. The mean percentages of F1 seedlings of P. deltoides paternity in crosses with pollen mixes P. deltodes + P. nigra, P. deltoides + P. maximowiczii, and P. deltoides + P. nigra + P. maximowiczii were 95.0, 92.5, and 84.8, respectively. P. maximowiczii pollen was more competitive than P. nigra pollen, which was at a selective disadvantage. An average of 83.6% of F1 progenies of the eight crosses with P. nigra + P. maximowiczii pollen showed P. maximowiczii paternity. Also, in four crosses with P. deltoides + P. nigra + P. maximowiczii pollen, the relative proportion of P. deltoides × P. maximowiczii seedlings (13.4%) was higher than that of P. deltoides × P. nigra seedlings (1.8%). Pollen proportions in the pollen mixes and pollen size did not significantly affect the competitive ability of the pollen. The relative pollen competitive ability indicated reproductive affinities among the species.  相似文献   

14.
Although group effect and collective decisions have been described in many insect species, the behavioral mechanisms involved in the process remain poorly documented at the individual level. We examined how individual behavior depends on the environmental context and we precisely characterized the behavioral rules leading to settlement of individual cockroaches in resting site. We focused on the spatial and temporal distribution of individuals in absence of conspecifics. Using isolated adult males of the cockroach Periplaneta americana, we showed that the quality of resting sites and the duration of the settlement exerted an influence on the individual decision-making: the probability of leaving a resting site decreased with the time spent under a shelter. A numerical model derived from experimental data suggested that this simple rule of self-amplification can also account for the interindividual variability.  相似文献   

15.
Clonal plants translocate resources through spacers between ramets. Translocation can be advantageous if a plant occurs in heterogeneous environments (division of labour); however, because plants interact locally, any spatial arrangement of ramets generates some heterogeneity in light and nutrients even if there is no external heterogeneity. Thus the capacity of a clonal plant to exploit heterogeneous environment must operate in an environment where heterogeneity is partly shaped by the plant growth itself. Since most experiments use only simple systems of two connected ramets, plant-level effects of translocation are unknown. A spatially explicit simulation model of clonal plant growth, competition and translocation is used to identify whether different patterns of translocation have the potential to affect the growth form of the plant and its competitive ability. The results show that different arrangements of translocation sinks over the spacer system can completely alter clonal morphology. Both runners and clumpers can be generated using the same architectural rules by changing translocation only. The effect of translocation strongly interacts with the architectural rules of the plant growth: plants with ramets staying alive when a spacer is formed are much less sensitive to change in translocation than plants with ramets only at the tip. If translocation cost is low, translocating plants are in most cases better competitors than plants that do not translocate; the difference becomes stronger in more productive environments. Key traits that confer competitive ability are total number of ramet, and their fine-scale aggregation.Co-ordinating editor: J. Tuomi  相似文献   

16.
Competitive ability is a major determinant of fitness, but why individuals vary so much in their competitiveness remains only partially understood. One increasingly prevalent view is that realized competitive ability varies because it represents alternative strategies that arise because of the costs associated with competitiveness. Here we use a population of great tits (Parus major) to explore whether individual differences in competitive ability when foraging can be explained by two traits that have previously been linked to alternative behavioural strategies: the personality trait 'exploration behaviour' and a simple cognitive trait, 'innovative problem-solving performance'. We assayed these traits under standardized conditions in captivity and then measured competitive ability at feeders with restricted access in the wild. Competitive ability was repeatable within individual males across days and correlated positively with exploration behaviour, representing the first such demonstration of a link between a personality trait and both competitive ability and food intake in the wild. Competitive ability was also simultaneously negatively correlated with problem-solving performance; individuals who were poor competitors were good at problem-solving. Rather than being the result of variation in 'individual quality', our results support the hypothesis that individual variation in competitive ability can be explained by alternative behavioural strategies.  相似文献   

17.
Arjen Biere 《Plant and Soil》1996,182(2):313-327
Plant species from unproductive or adverse habitats are often characterized by a low potential relative growth rate (RGR). Although it is generally assumed that this is the result of selection for specific trait combinations that are associated with a low rate of net biomass accumulation, few studies have directly investigated the selective (dis-)advantage of specific growth parameters under a set of different environmental conditions. Aim of the present study was to quantify the impact of inherent differences in growth parameters among phenotypes of a single plant species, Lychnis flos-cuculi, on their performance under different soil nutrient conditions. Growth analysis revealed significant variation in RGR among progeny families from a diallel cross between eight genotypes originating from a single population. Differences in RGR were due to variation in both leaf area ratio (LAR) and in net assimilation rate (NAR). A genetic trade-off was observed between these two components of growth, i.e. progeny families with high investment in leaf area had a lower rate of net biomass accumulation per unit leaf area. The degree of plasticity in RGR to nutrient conditions did not differ among progeny families. Inherent differences in growth parameters among progeny families had a significant impact on their yield in competition with Anthoxanthum odoratum and Taraxacum hollandicum. In nutrient-rich conditions, progeny families with an inherently high leaf weight ratio (LWR) achieved higher yield in competition, but variation in this trait could not explain differences in competitive yield under nutrient-poor conditions. Inherent differences in growth parameters among progeny families were poorly correlated with differences in survival and average rosette biomass (a good predictor of fecundity) among these progeny families sown in four field sites along a natural gradient of soil fertility. In the more productive sites none of the growth parameters was significantly correlated with rosette biomass, but in the least productive site progeny families with an inherently high specific leaf area (SLA) tended to produce smaller rosettes than low-SLA families. These results are consistent with the view that a selective advantage may accrue from either high or low values of individual RGR components, depending on habitat conditions, and that the selective advantage of low trait values in nutrient-poor environments may results in indirect selection for low RGR in these habitats.  相似文献   

18.
In order to investigate the possibility of using the dwarf gene for egg production, two dwarf brown-egg laying lines were selected for 16 generations on average clutch length; one line (L1) was normally feathered and the other (L2) was homozygous for the naked neck gene NA. A control line from the same base population, dwarf and segregating for the NA gene, was maintained during the selection experiment under random mating. The average clutch length was normalized using a Box-Cox transformation. Genetic variability and selection response were estimated either with the mixed model methodology, or with the classical methods for calculating genetic gain, as the deviation from the control line, and the realized heritability, as the ratio of the selection response on cumulative selection differentials. Heritability of average clutch length was estimated to be 0.42 ± 0.02, with a multiple trait animal model, whereas the estimates of the realized heritability were lower, being 0.28 and 0.22 in lines L1 and L2, respectively. REML estimates of heritability were found to decline with generations of selection, suggesting a departure from the infinitesimal model, either because a limited number of genes was involved, or their frequencies were changed. The yearly genetic gains in average clutch length, after normalization, were estimated to be 0.37 ± 0.02 and 0.33 ± 0.04 with the classical methods, 0.46 ± 0.02 and 0.43 ± 0.01 with animal model methodology, for lines L1 and L2 respectively, which represented about 30% of the genetic standard deviation on the transformed scale. Selection response appeared to be faster in line L2, homozygous for the NA gene, but the final cumulated selection response for clutch length was not different between the L1 and L2 lines at generation 16.  相似文献   

19.
In flowering plants, pollen limitation has been proposed to intensify selection on floral characters important in pollinator attraction, but may also select for traits that increase seed set through autonomous selfing. Here, a factorial design (+/- pollen addition, +/- pollinator removal) was used to investigate how the pollination environment affects selection on floral morphology via female fitness in a mixed-mating population of the yellow monkeyflower, Mimulus guttatus (Phrymaceae). Female fitness was strongly pollen-limited, with supplementally pollinated plants setting 37% more seeds than open-pollinated individuals. Strong positive selection was found on flower length, weak positive selection on flower width : length ratio and no selection on stigma-anther distance in both open-pollinated and supplementally pollinated treatments. By contrast, flowers with relatively narrow corollas and low stigma-anther distances were favored in the pollinator exclusion treatment. These results provide mixed support for the idea that pollen limitation intensifies selection on floral characters. Despite strong phenotypic selection, natural pollen limitation did not mediate selection on characters associated with either pollinator attraction or self-fertilization. However, the novel pattern of selection on severely pollen-limited plants suggests that reproductive assurance against pollinator loss may have been directly involved in the floral evolution of closely related selfing taxa.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号