共查询到20条相似文献,搜索用时 0 毫秒
1.
Novel inhibitors of fatty acid amide hydrolase 总被引:1,自引:0,他引:1
Sit SY Conway C Bertekap R Xie K Bourin C Burris K Deng H 《Bioorganic & medicinal chemistry letters》2007,17(12):3287-3291
A class of bisarylimidazole derivatives are identified as potent inhibitors of the enzyme fatty acid amide hydrolase (FAAH). Compound 17 (IC(50)=2 nM) dose-dependently (0.1-10mg/kg, iv) potentiates the effects of exogenous anandamide (1 mg/kg, iv) in a rat thermal escape test (Hargreaves test), and shows robust antinociceptive activity in animal models of persistent (formalin test) and neuropathic (Chung model) pain. Compound 17 (20 mg/kg, iv) demonstrates activity in the formalin test that is comparable to morphine (3mg/kg, iv), and is dose-dependently inhibited by the CB1 antagonist SR141716A. In the Chung model, compound 17 shows antineuropathic effects similar to high-dose (100 mg/kg) gabapentin. FAAH inhibition shows potential utility for the clinical treatment of persistent and neuropathic pain. 相似文献
2.
Vandevoorde S Saha B Mahadevan A Razdan RK Pertwee RG Martin BR Fowler CJ 《Biochemical and biophysical research communications》2005,337(1):104-109
Little is known as to the structural requirements of the acyl side chain for interaction of acylglycerols with monoacylglycerol lipase (MAGL), the enzyme chiefly responsible for the metabolism of the endocannabinoid 2-arachidonoylglycerol (2-AG) in the brain. In the present study, a series of twelve analogues of 1-AG (the more stable regioisomer of 2-AG) were investigated with respect to their ability to inhibit the metabolism of 2-oleoylglycerol by cytosolic and membrane-bound MAGL. In addition, the ability of the compounds to inhibit the hydrolysis of anandamide by fatty acid amide hydrolase (FAAH) was investigated. For cytosolic MAGL, compounds with 20 carbon atoms in the acyl chain and 2-5 unsaturated bonds inhibited the hydrolysis of 2-oleoylglycerol with similar potencies (IC50 values in the range 5.1-8.2 microM), whereas the two compounds with a single unsaturated bond were less potent (IC50 values 19 and 21 microM). The fully saturated analogue 1-monoarachidin did not inhibit the enzyme, whereas the lower side chain analogues 1-monopalmitin and 1-monomyristin inhibited the enzyme with IC50 values of 12 and 32 microM, respectively. The 22-carbon chain analogue of 1-AG was also potent (IC50 value 4.5 microM). Introduction of an alpha-methyl group for the C20:4, C20:3, and C22:4 compounds did not affect potency in a consistent manner. For the FAAH and the membrane-bound MAGL, there was no obvious relationship between the degree of unsaturation of the acyl side chain and the ability to inhibit the enzymes. It is concluded that increasing the number of unsaturated bonds on the acyl side chain of 1-AG from 1 to 5 has little effect on the affinity of acylglycerols for cytosolic MAGL. 相似文献
3.
The topic of this review is fatty acid amide hydrolase (FAAH), one of the best-characterized enzymes involved in the hydrolysis of bioactive lipids such as anandamide, 2-arachidonoylglycerol (2-AG), and oleamide. Herein, we discuss the nomenclature, the various assays that have been developed, the relative activity of the various substrates and the reversibility of the enzyme reactions catalyzed by FAAH. We also describe the cloning of the enzyme from rat and subsequent cDNA isolation from mouse, human, and pig. The proteins and the mRNAs from different species are compared. Cloning the enzyme permitted the purification and characterization of recombinant FAAH. The conserved regions of FAAH are described in terms of sequence and function, including the amidase domain which contains the serine catalytic nucleophile, the hydrophobic domain important for self association, and the proline rich domain region, which may be important for subcellular localization. The distribution of FAAH in the major organs of the body is described as well as regional distribution in the brain and its correlation with cannabinoid receptors. Since FAAH is recognized as a drug target, a large number of inhibitors have been synthesized and tested since 1994 and these are reviewed in terms of reversibility, potency, and specificity for FAAH and cannabinoid receptors. 相似文献
4.
Anandamide (N-arachidonoylethanolamine) loses its cannabimimetic activity when it is hydrolyzed to arachidonic acid and ethanolamine by the catalysis of an enzyme referred to as anandamide amidohydrolase or fatty acid amide hydrolase. Cravatt's group and our group cloned cDNA of the enzyme from rat, human, mouse and pig, and the primary structures revealed that the enzymes belong to an amidase family characterized by the amidase signature sequence. The recombinant enzyme acted not only as an amidase for anandamide and oleamide, but also as an esterase for 2-arachidonoylglycerol. The reversibility of the enzymatic anandamide hydrolysis and synthesis was also confirmed with a purified recombinant enzyme. Several fatty acid derivatives like methyl arachidonyl fluorophosphonate potently inhibited the enzyme. The enzyme was distributed widely in mammalian organs such as liver, small intestine and brain. However, the anandamide hydrolyzing enzyme found in human megakaryoblastic cells was catalytically distinct from the previously known enzyme. 相似文献
5.
6.
Keith JM Apodaca R Xiao W Seierstad M Pattabiraman K Wu J Webb M Karbarz MJ Brown S Wilson S Scott B Tham CS Luo L Palmer J Wennerholm M Chaplan S Breitenbucher JG 《Bioorganic & medicinal chemistry letters》2008,18(17):4838-4843
A series of thiadiazolopiperazinyl aryl urea fatty acid amide hydrolase (FAAH) inhibitors is described. The molecules were found to inhibit the enzyme by acting as mechanism-based substrates, forming a covalent bond with Ser241. SAR and PK properties are presented. 相似文献
7.
Du W Hardouin C Cheng H Hwang I Boger DL 《Bioorganic & medicinal chemistry letters》2005,15(1):103-106
A novel series of heterocyclic sulfoxides and sulfones was prepared and examined as potential inhibitors of fatty acid amide hydrolase (FAAH), the enzyme responsible for inactivation of neuromodulating fatty acid amides including anandamide and oleamide. 相似文献
8.
Synthesis of sugar fatty acid esters by modified lipase. 总被引:5,自引:0,他引:5
A simple synthesis of sugar fatty acid esters was developed in a nonaqueous solution using lipase modified by synthetic detergent. Esterification of sugar was accelerated by continuous removal of water from the reaction mixture with a molecular sieve. When glucose and palmitic acid (1:1 by mole) were used as the starting substrates, more than 90% of glucose was converted to its ester in this system. The resultant product was 6-O-palmitoylglucose. Other mono- or disaccharides were also esterified by the modified lipase with high yield. It was shown that the modified lipase might act as a catalyst for the synthesis of sugar fatty acid esters. 相似文献
9.
The subcellular distribution and sidedness on the membranes of four chemically and genetically distinct esterases (esterases ES-3, ES-4, ES-8, ES-15) in rat liver was investigated using selective substrates. (1) Rat liver homogenate was divided into nine subcellular fractions by differential centrifugation techniques. The cell fractions were assayed for the enzymatic hydrolysis of acetanilide (ES-3), propanidid, palmitoyl-CoA and monopalmitoylglycerol (ES-4), methyl butyrate and octanoylglycerol (ES-8), and decanoylcarnitine (ES-15). With all substrates, the highest specific activities were found in the rough and smooth endoplasmic reticulum fractions. This localization of the esterases was confirmed by labelling the cell fractions with the specific, covalently binding inhibitor bis(4-nitro[14C]phenyl) phosphate. The enzymatic hydrolysis of the palmitoyl esters in differing cell fractions did not completely parallel that of propanidid. This confirms the well-known existence of palmitoyl-CoA hydrolases other than esterase ES-4. (2) Density gradient fractionations with crude mitochondria indicated that a low amount of at least one of these carboxylesterases was an integral part of these organelles too. (3) Proteinase treatment reduced the non-specific esterase activities as well as lipase activities versus dioctanoylglycerol, acylcarnitines and palmitoyl-CoA only in detergent-disrupted microsomal vesicles. This might indicate a lumenal orientation of these enzymes. However, of the charged substrates palmitoylcarnitine and palmitoyl-CoA only the latter one showed the typical latency to be expected for a hydrolysis in the lumen of the endoplasmic reticulum. 相似文献
10.
11.
The hydrolysis of chylomicrons enriched in long-chain n-3 fatty acids by cardiac lipoprotein lipase was studied. In 60 min, 24.8% of the triacylglycerol fatty acids were released as free fatty acids. The fatty acids were hydrolyzed at different rates. DHA (docosahexaenoic acid, 22:6n-3) and EPA (eicosapentaenoic acid, 20:5n-3) were released at rates significantly less than average. Stearic acid (18:0), 20:1n-9, and alpha-linolenic acid (18:3n-3) were released significantly faster than average. There was no relationship between the rate of release of a fatty acid and the number of carbons or the number of double bonds. Lipoprotein lipase selectively hydrolyzes the fatty acids of chylomicron triacylglycerols. This selectively will result in remnants that are relatively depleted in 18:0, 20:1, and 18:3 and relatively enriched in 20:5 and 22:6. 相似文献
12.
The comparative substrate specificities of five purified serine hydrolases from rat liver microsomes have been investigated, especially their action upon natural lipoids. All enzymes had high carboxylesterase activities with simple aliphatic and aromatic esters and thioesters. The broad pH optima were in the range of pH 6-10. Synthetic amides were less potent substrates. The hydrolytic activities towards palmitoyl-CoA and monoacyl glycerols were generally high, whereas phospholipids and palmitoyl carnitine were cleaved at moderate rates. Acetyl-CoA, acetyl carnitine, and ceramides were not cleaved at all. The closely related hydrolases with the highest isoelectric points (pI 6.2 and 6.4) were most active with palmitoyl-CoA and palmitoyl glycerol. One of these enzymes might also be responsible for the low cholesterol oleate-hydrolyzing capacity of rat liver microsomes. Among the other hydrolases, that with pI 6.0 showed significant activities with simple butyric acid esters, 1-octanoyl glycerol, and octanoylamide. The esterase with pI 5.6 had the relatively highest activities with palmitoyl carnitine and lysophospholipids. The purified enzyme with pI 5.2 showed some features of the esterase pI 5.6, but generally had lower specific activities, except with 4-nitrophenyl acetate. The lipoid substrates competitively inhibited the arylesterase activity of the enzymes. The varying activities of the individual hydrolases were influenced in parallel by a variety of inhibitors, indicating that the purified hydrolases possessed a relatively broad specificity and were not mixtures of more specific enzymes. The nomenclature of the purified hydrolases is discussed. 相似文献
13.
Urbach A Muccioli GG Stern E Lambert DM Marchand-Brynaert J 《Bioorganic & medicinal chemistry letters》2008,18(14):4163-4167
A series of novel 2-azetidinones (β-lactams) bearing short alkenyl chains at C3 and N1 have been prepared and evaluated in vitro as inhibitors of human FAAH. Compound 9c (1-(4′-pentenoyl-3-(4′-pentenyl)-2-azetidinone)) featured an IC50 value of 4.5 μM and a good selectivity for FAAH versus MGL. 相似文献
14.
Gustin DJ Ma Z Min X Li Y Hedberg C Guimaraes C Porter AC Lindstrom M Lester-Zeiner D Xu G Carlson TJ Xiao S Meleza C Connors R Wang Z Kayser F 《Bioorganic & medicinal chemistry letters》2011,21(8):2492-2496
Starting from a series of ureas that were determined to be mechanism-based inhibitors of FAAH, several spirocyclic ureas and lactams were designed and synthesized. These efforts identified a series of novel, noncovalent FAAH inhibitors with in vitro potency comparable to known covalent FAAH inhibitors. The mechanism of action for these compounds was determined through a combination of SAR and co-crystallography with rat FAAH. 相似文献
15.
Fatty acid amide hydrolase (FAAH) is a mammalian integral membrane enzyme that catabolizes several neuromodulatory fatty acid amides, including the endogenous cannabinoid anandamide and the sleep-inducing lipid oleamide. FAAH belongs to a large group of hydrolytic enzymes termed the amidase signature (AS) family that is defined by a conserved, linear AS sequence of approximately 130 amino acids. Members of the AS family display strikingly different substrate selectivities, yet the primary structural regions responsible for defining substrate recognition in these enzymes remain unknown. In this study, a series of unbranched p-nitroanilide (pNA) substrates ranging from 6 to 20 carbons in length was used to probe the acyl chain binding specificity of FAAH, revealing that this enzyme exhibits a strong preference for acyl chains 9 carbons in length or longer. A fluorophosphonate inhibitor of FAAH containing a photoactivatable benzophenone group was synthesized and used to locate a region of the enzyme implicated in substrate binding. Protease digestion and mass spectrometry analysis of FAAH-inhibitor conjugates identified the major site of cross-linking as residues 487-493. Site-directed mutagenesis revealed that a single residue in this region, I491, strongly influenced substrate specificity of FAAH. For example, an I491A mutant displayed a greatly reduced binding affinity for medium-chain pNA substrates (7-12 carbons) but maintained nearly wild-type binding and catalytic constants for longer chain substrates (14-20 carbons). Mutation of I491 to aromatic or more polar residues generated enzymes with relative hydrolytic efficiencies for medium- versus long-chain pNAs that varied up to 90-fold. Collectively, these studies indicate that I491 participates in hydrophobic binding interactions with medium-chain FAAH substrates. Additionally, the significant changes in substrate selectivity achieved by single amino acid changes suggest that FAAH possesses a rather malleable substrate binding domain and may serve, along with other AS enzymes, as a template for the engineering of amidases with novel and/or tailored specificities. 相似文献
16.
Fatty acid amide hydrolase (EC 3.5.1.4.) is the enzyme responsible for the rapid degradation of lipid-derived chemical messengers such as anandamide, oleamide, and 2-arachidonoylglycerol. The pharmacological characterization of this enzyme in vivo has been hampered by the lack of selective and bioavailable inhibitors. We have developed a simple, radioactive, high-throughput-compatible assay for this enzyme based on the differential absorption of the substrate and its products to activated charcoal. The assay was validated using known inhibitors. It may be applied for the identification of new inhibitors from a compound library. 相似文献
17.
Fatty acid amide hydrolase (FAAH) is a pharmaceutical target whose inhibition may lead to valuable therapeutics. Sensitive substrates for high-throughput assays are crucial for the rapid-screening FAAH inhibitors. Here we describe the development of novel and highly sensitive fluorescent assays for FAAH based on substituted aminopyridines. Examining the relationship between the structure and the fluorescence of substituted aminopyridines suggested that a methoxy group in the para position relative to the amino group in aminopyridines greatly increased the fluorescence (i.e., quantum yields approach unity). These novel fluorescent reporters had a high Stokes' shift of 94 nm, and their fluorescence in buffer systems increased with pH values from neutral to basic. Fluorescent substrates with these reporters displayed a very low fluorescent background and high aqueous solubility. Most importantly, fluorescent assays for FAAH based on these substrates were at least 25 times more sensitive than assays using related compounds with published colorimetric or fluorescent reporters. This property results in shorter assay times and decreased protein concentrations in the assays. Such sensitive assays will facilitate distinguishing the relative potency of powerful inhibitors of FAAH. When these fluorescent substrates were applied to human liver microsomes, results suggested that there was at least one amide hydrolase in addition to FAAH that could hydrolyze long-chain fatty acid amides. These results show that these fluorescent substrates are very valuable tools in FAAH activity assays including screening inhibitors by high-throughput assays instead of using the costly and labor-intensive radioactive ligands. Potential applications of novel fluorescent reporters are discussed. 相似文献
18.
A radiochromatographic method has been set up in order to determine fatty acid amide hydrolase (FAAH) activity, based on reversed-phase high-performance liquid chromatography and on-line scintillation counting. The reaction products were separated using a C18 column eluted with methanol-water-acetic acid and quantitated with an external standard. Baseline separation of the acid product from the substrate was completed in less than 4 min, with a detection limit of 2.5 fmol arachidonic acid at a signal to noise ratio of 4:1. The method enabled to determine the kinetic constants (i.e., apparent Km of 2.0 +/- 0.2 microM and Vmax of 800 +/- 75 pmol. min-1. mg protein-1 toward anandamide) and the substrate specificity of human brain FAAH, as well as the extent of enzyme inhibition by some anandamide congeners. The femtomole sensitivity and the accuracy of the method allow detection and characterization of the activity of FAAH in very minute tissue samples or in samples where the enzymatic activity is very low. 相似文献
19.
Yong-Shan Zhao Qing-Chuan Zheng Hui-Ying Chu Chia-Chung Sun 《Molecular simulation》2013,39(14):1201-1208
The three-dimensional (3D) model of the human fatty acid amide hydrolase (hFAAH) was constructed based on the crystal structure of the rat FAAH (PDB code 1MT5) in complex with a substrate using Modeller9v2 program. With the aid of molecular mechanics and molecular dynamics method, the last model was obtained and further assessed by Profile-3D, Prosa2003 and Procheck, which confirms that the refined model is reliable. Furthermore, the docking results of propofol and its structural analogue into the active site of hFAAH indicate that 2,6-di-sec-butyl phenol is a more preferred ligand than others, which is in good agreement with the experimental results. From the docking studies, we also suggest that Phe192, Ile238, Thr377, Leu380, Phe381, Phe388 and Leu404 in the hFAAH are seven important determinant residues in binding as they have strong van der Waal interactions with the ligand. 相似文献
20.
Sean D. Kodani Saavan Bhakta Sung Hee Hwang Svetlana Pakhomova Marcia E. Newcomer Christophe Morisseau Bruce D. Hammock 《Bioorganic & medicinal chemistry letters》2018,28(4):762-768
Multi-target inhibitors have become increasing popular as a means to leverage the advantages of poly-pharmacology while simplifying drug delivery. Here, we describe dual inhibitors for soluble epoxide hydrolase (sEH) and fatty acid amide hydrolase (FAAH), two targets known to synergize when treating inflammatory and neuropathic pain. The structure activity relationship (SAR) study described herein initially started with t-TUCB (trans-4-[4-(3-trifluoromethoxyphenyl-l-ureido)-cyclohexyloxy]-benzoic acid), a potent sEH inhibitor that was previously shown to weakly inhibit FAAH. Inhibitors with a 6-fold increase of FAAH potency while maintaining high sEH potency were developed by optimization. Interestingly, compared to most FAAH inhibitors that inhibit through time-dependent covalent modification, t-TUCB and related compounds appear to inhibit FAAH through a time-independent, competitive mechanism. These inhibitors are selective for FAAH over other serine hydrolases. In addition, FAAH inhibition by t-TUCB appears to be higher in human FAAH over other species; however, the new dual sEH/FAAH inhibitors have improved cross-species potency. These dual inhibitors may be useful for future studies in understanding the therapeutic application of dual sEH/FAAH inhibition. 相似文献