首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In a recent study, we reported a previously undescribed behavior in which a bark beetle exuded oral secretions containing bacteria that have antifungal properties, and hence defend their galleries against pervasive antagonistic Hyphomycete fungi. Actinobacteria, a group known for their antibiotic properties, were the most effective against fungi that invade the spruce beetle galleries. In the present study, we describe the isolation and identification of microorganisms from oral secretions of three bark beetles (Coleoptera: Curculionidae: Scolytinae): the spruce beetle, Dendroctonus rufipennis Kirby, the mountain pine beetle, Dendroctonus ponderosae Hopkins, and the pine engraver, Ips pini Say. Bacteria isolated from these three species span the major bacterial classes α-, β-, and γ-Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria, except for D. ponderosae , which yielded no α-proteobacteria or Bacteroidetes isolates. Spruce beetles and pine engraver beetles had similar numbers of α-proteobacteria isolates, but pine engravers yielded twice as many Bacteroidetes isolates as spruce beetles. In contrast, mountain pine beetles yielded more isolates in the β- and γ-proteobacteria than spruce beetles and pine engravers. The highest percentage of Actinobacteria was obtained from spruce beetles, followed by pine engravers and mountain pine beetles. All of the fungal isolates obtained from the three beetle species were Ascomycetes. The greatest fungal diversity was obtained in spruce beetles, which had nine species, followed by pine engravers with five, and mountain pine beetles with one.  相似文献   

3.
Position-resolved small-angle X-ray scattering was used to investigate the nanostructure of the wood cell wall in two softwood species (Norwegian spruce and Scots pine) and two hardwood species (pedunculate oak and copper beech). The tilt angle of the cellulose fibrils in the wood cell wall versus the longitudinal cell axis (microfibril angle) was systematically studied over a wide range of annual rings in each tree. The measured angles were correlated with the distance from the pith and the results were compared. The microfibril angle was found to decrease from pith to bark in all four trees, but was generally higher in the softwood than in the hardwood. In Norwegian spruce, the microfibril angles were higher in late wood than in early wood; in Scots pine the opposite was observed. In pedunculate oak and copper beech, low angles were found in the major part of the stem, except for the very first annual rings in pedunculate oak. The results are interpreted in terms of mechanical optimization. An attempt was made to give a quantitative estimation for the mechanical constraints imposed on a tree of given dimensions and to establish a model that could explain the general decrease of microfibril angles from pith to bark.  相似文献   

4.
Predictors of cryptogamic wood-inhabiting communities need to be examined to understand the drivers of forest biodiversity. We estimated the influence of bark cover on the wood-inhabiting vegetation on conifer logs in early stages of epixylic succession in mature European boreal and hemi-boreal forests. Abundance of substrate groups with respect to log attributes was estimated with generalized linear and generalized linear mixed models. The structure and composition of epixylic communities was analysed using non-metric multidimensional scaling with subsequent environmental fitting. The abundance of true epixylics was inversely related to bark cover. In the first stage, bark cover did not influence the abundance of epiphytes and epigeous species; positively influenced the abundance of facultative epixylics on spruce logs and negatively influenced it on pine logs. In the second stage, the effect of bark cover was positive for epiphytes and epigeous species on spruce logs and for facultative epixylics independent of log species identity and negative for epigeous species on pine logs. Generalist species did not depend on bark cover. Total cover of wood-inhabiting vegetation was marginally influenced by bark cover. The effect of bark cover on epixylic vegetation at community level was negligible. In general, bark cover favours the establishment and growth of species with low substrate specificity. This preference may lead to either burial of logs by epigeous bryophytes, or facilitation of succession towards the dominance of ground vegetation.  相似文献   

5.
Interactions between two ectomycorrhizal fungal species, Piloderma croceum Erikss. and Hjortst. and Piloderma sp. 1 (found to colonise spruce roots and wood ash granules in the field), were investigated in wood ash amended substrates. The comparative ability of these fungi to colonise roots of non-mycorrhizal spruce (Picea abies (L.) Karst.) seedlings was studied in relation to factorial combinations of wood ash and N fertilisation. Non-mycorrhizal spruce seedlings (bait seedlings) were planted together with spruce seedlings colonised by P. croceum or Piloderma sp. 1. The growth substrate was a sand-peat mixture with wood ash or no ash and supplied with two levels of N, so that four substrate combinations were obtained. Piloderma sp. 1 mycelia colonised around 60% of the fine roots of bait seedlings in ash treatments regardless of N level and around 20-26% in treatments without ash. P. croceum only colonised 8% of the root tips in the presence of ash but 56% of the root tips in the low-N treatment without ash. However, in the high-N treatment without ash the colonisation level was reduced to around 30%. Total numbers of root tips per seedling did not vary significantly between the treatments. Possible reasons for the competitive advantage of Piloderma sp. 1 in wood ash fertilised substrate are discussed.  相似文献   

6.
1. In a laboratory study of maturation feeding of female pine weevil Hylobius abietis on current and 1‐year‐old stem bark of transplants of Scots and Corsican pine, Norway and Sitka spruce, Douglas fir, and hybrid larch, the length of the pre‐oviposition period was influenced by the species on which weevils fed. The shortest pre‐oviposition period was on hybrid larch (11.8 days) and the longest on Douglas fir (15.5 days). 2. The species on which weevils fed also affected fecundity but there was evidence of a species–year interaction. Over a period of 36 days, most eggs were laid by weevils feeding on current stem of Norway spruce and Corsican and Scots pine and fewest on current stem of Sitka spruce. 3. Significant maternal effects on egg size were observed both in relation to female size and conifer species. The largest eggs were laid on Corsican pine and the smallest on Douglas fir, with no evidence of a trade‐off between number of eggs laid and their size. 4. There was a positive relationship between egg and larval size and between larval size and survival on logs of four conifer species. Residual resistance mechanisms in the bark of recently cut stumps and larval competition are discussed briefly in relation to the importance of the observed maternal effects on weevil population dynamics.  相似文献   

7.
The large pine weevil (Hylobius abietis L.) is an important pest of young forest stands in Europe. Larvae develop under the bark of freshly cut pine and spruce stumps, but maturing weevils feed on the bark of coniferous seedlings. Such seedlings frequently die because of bark consumption near the root collar. We tested the effect of three treatments (the insecticide alpha cypermethrin, a wax coating and a glue coating) on the feeding damage caused by H. abietis on Douglas fir (Pseudotsuga menziesii) and Norway spruce (Picea abies) seedlings under semi-natural conditions. In two experiments (one in 2016 and another in 2017) seedlings in cages were subjected to pine weevil feeding for 16 weeks under shaded outdoor conditions. The experiment in 2016 compared insecticide and wax treatments and an untreated control on Douglas fir and Norway spruce, and the experiment in 2017 compared insecticide, wax and glue treatments and an untreated control on Norway spruce. In both experiments, all treatments significantly reduced H. abietis feeding damage at week 8 at the end of both experiments (week 16); the effect of treatments was significant only on spruce seedlings. The damages on Douglas fir seedlings was less on treated seedlings than on untreated control seedlings but differences were not significant. Coating stems with glue and especially with wax was generally effective at reducing weevil damage and in most cases provided control that was not significantly different from that provided by insecticide treatment. Our results suggest that a wax coating has the potential to replace the protection of seedlings provided by insecticides.  相似文献   

8.
In recent decades we have seen rapid and co‐occurring changes in landscape structure, species distributions and even climate as consequences of human activity. Such changes affect the dynamics of the interaction between major forest pest species, such as bark beetles (Coleoptera: Curculionidae, Scolytinae), and their host trees. Normally breeding mostly in broken or severely stressed spruce; at high population densities some bark beetle species can colonise and kill healthy trees on scales ranging from single trees in a stand to multi‐annual landscape‐wide outbreaks. In Eurasia, the largest outbreaks are caused by the spruce bark beetle, Ips typographus (Linnaeus), which is common and shares a wide distribution with its main host, Norway spruce (Picea abies Karst.). A large literature is now available, from which this review aims to synthesize research relevant for the population dynamics of I. typographus and co‐occurring species under changing conditions. We find that spruce bark beetle population dynamics tend to be metastable, but that mixed‐species and age‐heterogeneous forests with good site‐matching tend to be less susceptible to large‐scale outbreaks. While large accumulations of logs should be removed and/or debarked before the next swarming period, intensive removal of all coarse dead wood may be counterproductive, as it reduces the diversity of predators that in some areas may play a role in keeping I. typographus populations below the outbreak threshold, and sanitary logging frequently causes edge effects and root damage, reducing the resistance of remaining trees. It is very hard to predict the outcome of interspecific interactions due to invading beetle species or I. typographus establishing outside its current range, as they can be of varying sign and strength and may fluctuate depending on environmental factors and population phase. Most research indicates that beetle outbreaks will increase in frequency and magnitude as temperature, wind speed and precipitation variability increases, and that mitigating forestry practices should be adopted as soon as possible considering the time lags involved.  相似文献   

9.
Two fungi associated with bark beetles, Graphium pseudormiticum (described in 1994) and Rhexographium fimbriisporum (described in 1995), have two micromorphological characters in common. Both species produce conidia with conspicuous basal frills, and the conidia align in chains, despite being produced in slime. The association of G. pseudormiticum with the pine bark beetle, Orthotomicus erosus, and the association of R. fimbriisporum with the spruce bark beetle, Ips typographus, suggest ecological differences between the two fungal species. Analyses of micromorphology and phylogenetic analyses of aligned 18S and ITS sequences suggest that these two species are congeneric and should be classified in Graphium but that they represent distinct species. A collection of strains tentatively identified as Graphium spp., isolated from Ips typographus on Picea abies, Ips cembrae on Larix decidua and Tomicus minor on Pinus sylvestris in Austria share the same unusual basal conidial frills and conidial chains. Isolates from spruce were identified as G. fimbriisporum and those from pine as G. pseudormiticum. The strains from Ips cembrae on Larix decidua, distinguished by the reddish color of their colonies, microscopic structures and molecular characteristics, are described as the new species Graphium laricis sp. nov., and the close relationship of this species with the other two species is confirmed.  相似文献   

10.

The small spruce bark beetle Ips amitinus is a widespread species in many European countries that has been actively spreading into Northern Europe in the recent decades. In Russia, I. amitinus is present in the western, northwestern, and northern regions of the European part, with a tendency for range expansion. The species was first recognized in West Siberia in 2019 by characteristic morphological features and molecular genetic analysis. This bark beetle is abundant on Pinus sibirica in Siberian pine forests located near settlements within Tomsk and Kemerovo provinces, and is also sporadically found on the Siberian spruce Picea obovata. It colonizes the upper trunk and branches of standing and windfall trees. In the outbreak foci this bark beetle causes catastrophic drying of Siberian pines, starting from the crown top. This pattern of tree drying was noted for the first time near settlements in Yashkinsky District of Kemerovo Province in 2014, and now outbreak foci of I. amitinus exist in all the Siberian pine forests in this district. The population growth of I. amitinus was probably facilitated by dry and hot summer weather in the southeast of West Siberia during the last decade, in 2011 and 2012, and also by heavy winter snowfalls leaving numerous snapped tree branches which are easily colonized by the pest. In Tomsk Province, the most active outbreak focus of I. amitinus appeared in 2018 in the Siberian pine forest near Luchanovo and Ipatovo, following an outbreak of the Siberian moth Dendrolimus sibiricus. The invasion of I. amitinus in Siberia may increase the degradation rates not only of the gene-reserve Siberian pine forests but also of other dark coniferous stands.

  相似文献   

11.
Previous studies report that the low colonisation success on eroded roadslopes of semiarid environments is controlled by microsite limitations. We predicted that soil water availability, through its effect on seed germination, is a determinant factor in the colonisation process of roadslopes in semiarid environments. Moreover, we predicted that the success of species establishment on the harshest roadslope conditions (i.e., south-facing roadcuts) is either due to the ability of seeds to germinate fast at low water potentials (colonising species) or to the ability of plants to sprout (resistant species). Specifically we present evidence for: (1) soil drying occurs faster on roadcuts than on roadfills after a rainfall event; (2) germination is a filtering process that influences the success of species establishment on roadslopes; (3) species able to colonise successfully south-facing roadcuts have higher germination rates and a shorter time to germination under water-stress conditions than species able to colonise successfully but exclusively the most favourable roadslopes (i.e., roadfills); (4) species that live on south-facing roadcuts and have the ability to sprout do not necessarily germinate with germinating rates and speeds as high as species that colonise successfully these slopes but are unable to sprout. To test these hypotheses we compared water dynamics in the soil among roadslope types and aspects as well as the seed ability to germinate at low water potentials among species showing different regeneration strategies and establishment success on roadslopes. Soil water availability after rainfalls occurring during the germination period played a major role in the germination of seeds. The patterns of seed germination under water-stress conditions were consistent with the success of colonising species on roadslopes and with the distribution of adult plants in the roadslopes 8 years after these latter were built. We discuss the usefulness of these results for the improvement of revegetation projects in semiarid areas by means of an appropriate selection of species adapted to the local environmental conditions. We suggest that the ability of species to germinate under water stress could be an indication of a species’ potential for success under semiarid conditions. Responsible Editor: John McPherson Cheeseman.  相似文献   

12.
Invasive populations of small spruce bark beetle Ips amitinus were first registered in 2019 in the southeast of Western Siberia. In natural stands of Siberian pine (Pinus sibirica Du Tour), several hundred hectares of outbreak foci of the alien bark beetle were identified. In 2020, a local focus of the bark beetle was found in the conifer collection in the arboretum “Kedr” of the Institute of Monitoring Climatic and Ecological Systems SB RAS, 30 km from Tomsk. The bark beetle caused the main damage to the collection of pines. I. amitinus colonized both host plants Scotch pine (Pinus sylvestris L.) and mountain pine (Pinus mugo Turra), which were previously known to it in the native range in Europe, and the local Siberian species Siberian pine (Pinus sibirica Du Tour), Siberian spruce (Picea obovata Ledeb.) and introduced Far Eastern Korean pine (Pinus koraiensis Sieb. et Zucc.). Demographic characteristics of I. amitinus studied on damaged trees indicate its high reproduction potential in Siberia. The bark beetle outbreak focus was suppressed; however, this plantation requires further annual monitoring of pest abundance and distribution, both to preserve the scientific dendroecological field station and to study the implementation of sential plant conception in relation to the invasion of I. amitinus.  相似文献   

13.
The most appropriate strategy for preserving fragmented populations depends on a species’ ability to colonise distant habitat patches. Insects associated with early decay stages of dead wood are expected to have a high capacity to colonise new habitat patches. To study the dispersal ranges of beetles (Coleoptera) and flat bugs (Hemiptera: Aradidae) dependent on recently dead aspen (Populus tremula) wood in Finland, we set out 58 piles of recently cut aspen logs at various distances up to 1.6 km from forests that contained a high density of old aspen trees. We captured insects by trunk window-traps, and counted beetles’ exit holes. Habitat connectivity was measured in terms of the amount of suitable aspen-wood in the surrounding environment, with the closest dead wood items up-weighted by a negative-exponential function. The log-piles attracted many saproxylic insects including four red-listed aspen-specialist species. The exposure of log-piles to the sun, and high levels of habitat connectivity increased the species richness of aspen-specialists, whereas bark peeling by moose decreased richness. The spatial scale at which species richness had its strongest response to habitat was 93 m. Among individual species there was a wide variability in spatial scale of response. This study supports the view that conservation efforts in boreal forests should be concentrated on sites where colonisation by target species is most likely. Restoration of habitat by re-locating logs may be useful at localities with a rich and specialised fauna but which have too low rate of formation of dead wood by natural processes.  相似文献   

14.
The large pine weevil ( Hylobius abietis L.) is one of the most important pests in coniferous reforestation in Europe. Larvae develop in the stumps of recently felled trees; the emerging adults feed on the bark of seedlings and may kill them. The ability of the entomopathogenic nematodes Heterorhabditis megidis and Steinernema carpocapsae to invade pine weevil larvae in Sitka spruce ( Picea sitchensis ) buried in moist sand was evaluated. Overall, four times as many H. megidis as S. carpocapsae invaded pine weevil larvae. The two species of nematode differed in their response to timber condition. The number of S. carpocapsae invading pine weevil larvae was twice as high in billets inoculated with the wood-rotting fungus Phlebiopsis gigantea as in fresh timber, while the number of H. megidis invading was reduced by 25%. Invasion into non-feeding insects (larvae of the wax moth Galleria mellonella ) contained in timber disks was also affected by timber quality, indicating that nematode behaviour was affected directly by the physical or chemical condition of the timber, though trophically mediated effects may also have been involved.  相似文献   

15.
Two Trichoderma isolates (T. hamatum LU592 and T. atroviride LU132) were tested for their ability to promote the growth and health of commercially grown Pinus radiata seedlings. The colonisation behaviour of the two isolates was investigated to relate rhizosphere competence and root penetration to subsequent effects on plant performance. Trichoderma hamatum LU592 was shown to enhance several plant health and growth parameters. The isolate significantly reduced seedling mortality by up to 29%, and promoted the growth of shoots (e.g. height by up to 16%) and roots (e.g. dry weight by up to 31%). The introduction of LU592 as either seed coat or spray application equally improved seedling health and growth demonstrating the suitability of both application methods for pine nursery situations. However, clear differences in rhizosphere colonisation and root penetration between the two application methods highlighted the need for more research on the impact of inoculum?densities. When spray-applied, LU592 was found to be the predominant Trichoderma strain in the plant root system, including bulk potting mix, rhizosphere and endorhizosphere. In contrast, T. atroviride LU132 was shown to colonise the root system poorly, and no biological impact on P. radiata seedlings was detected. This is the first report to demonstrate rhizosphere competence as a useful indicator for determining Trichoderma bio-inoculants for P. radiata. High indigenous Trichoderma populations with similar population dynamics to the introduced strains revealed the limitations of the dilution plating technique, but this constraint was alleviated to some extent by the use of techniques for morphological and molecular identification of the introduced isolates.  相似文献   

16.
1 Although mountain pine beetle Dendroctonus ponderosae Hopkins are able to utilize most available Pinus spp. as hosts, successful colonization and reproduction in other hosts within the Pinaceae is rare.
2 We observed successful reproduction of mountain pine beetle and emergence of new generation adults from interior hybrid spruce Picea engelmannii × glauca and compared a number of parameters related to colonization and reproductive success in spruce with nearby lodgepole pine Pinus contorta infested by mountain pine beetle.
3 The results obtained indicate that reduced competition in spruce allowed mountain pine beetle parents that survived the colonization process to produce more offspring per pair than in more heavily-infested nearby pine.
4 We also conducted an experiment in which 20 spruce and 20 lodgepole pines were baited with the aggregation pheromone of mountain pine beetle. Nineteen pines (95%) and eight spruce (40%) were attacked by mountain pine beetle, with eight (40%) and three (15%) mass-attacked, respectively.
5 Successful attacks on nonhost trees during extreme epidemics may be one mechanism by which host shifts and subsequent speciation events have occurred in Dendroctonus spp. bark beetles.  相似文献   

17.
Five strains of Salmonella enteritidis phage type 4 (PT4) isolated in 1978, 1984 and 1988 were examined for their ability to colonise the caecum and invade the liver of day-old chickens. All strains were capable of caecal colonisation and there were no differences in their colonisation ability in this respect. In contrast there was a gradation in the ability of strains to invade the liver, with strains isolated in 1988 proving the most invasive. Absence of a 38 megadalton (Md) plasmid, which has been shown to be involved in the virulence of S. enteritidis PT4 for BALBc mice, had little effect on the ability of strains of this phage type to colonise the caecum or invade the liver of day-old chickens. These results suggest that recent isolates of PT4 may have enhanced virulence for chickens which is not necessarily associated with the carriage of a 38 Md plasmid.  相似文献   

18.
19.
1 As the phenological window hypothesis was reported to be significant in influencing the fitness of many herbivores feeding on tree foliage, could it also explain the performance of an insect such as the white pine weevil Pissodes strobi mainly attacking the bark phloem of conifers? 2 Under field conditions, adult weevils were caged on Norway spruce trees presenting a natural variation in their shoot growth phenology. 3 We evaluated white pine weevil biological performances, including oviposition, the number of emerged insects, survival, adult mean weight and tree defense responses as reflected by the production of induced resin canals. 4 None of the white pine weevil biological parameters was significantly affected by Norway spruce phenology. 5 The number of eggs per hole, the number of oviposition holes per leader, the number of emerged adults and their mean weight were not affected by host phenology. 6 The intensity of the traumatic response observed was variable and not correlated with budburst phenology. 7 Trees with higher traumatic responses, forming two or more layers of traumatic ducts, had lower adult emergence and estimated survival. 8 The distance between the first layer of traumatic resin ducts and the start of the annual ring was not correlated with the number of emerged weevils. 9 Norway spruce, which is an exotic tree in North America and a relatively recent host for the white pine weevil, might not possess the defense mechanisms necessary to fight off the white pine weevil.  相似文献   

20.
Fungi colonising root tips of Pinus sylvestris and Picea abies grown under four different seedling cultivation systems were assessed by morphotyping, direct sequencing and isolation methods. Roots were morphotyped using two approaches: (1) 10% of the whole root system from 30 seedlings of each species and (2) 20 randomly selected tips per plant from 300 seedlings of each species. The first approach yielded 15 morphotypes, the second yielded 27, including 18 new morphotypes. The overall community consisted of 33 morphotypes. The level of mycorrhizal colonisation of roots determined by each approach was about 50%. The cultivation system had a marked effect on the level of mycorrhizal colonisation. In pine, the highest level of colonisation (48%) was observed in bare-root systems, while in spruce, colonisation was highest in polyethylene rolls (71%). Direct internal transcribed spacer ribosomal DNA sequencing and isolation detected a total of 93 fungal taxa, including 27 mycorrhizal. A total of 71 (76.3%) fungi were identified at least to a genus level. The overlap between the two methods was low. Only 13 (13.9%) of taxa were both sequenced and isolated, 47 (50.5%) were detected exclusively by sequencing and 33 (35.5%) exclusively by isolation. All isolated mycorrhizal fungi were also detected by direct sequencing. Characteristic mycorrhizas were Phialophora finlandia, Amphinema byssoides, Rhizopogon rubescens, Suillus luteus and Thelephora terrestris. There was a moderate similarity in mycorrhizal communities between pine and spruce and among different cultivation systems.Electronic supplementary material Supplementary material is available for this article at and accessible for authorised users  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号