首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wickner RB  Leibowitz MJ 《Genetics》1977,87(3):453-469
Yeast strains carrying a double-stranded RNA plasmid of 1.4–1.7 x 106 daltons encapsulated in virus-like particles secrete a toxin that kills strains lacking this plasmid. The plasmid requires at least 24 chromosomal genes (pets, and mak1 through mak23) for its replication or maintenance. We have detected dominant Mendelian mutations (called KRB1 for killer replication bypass) that bypass two chromosomal genes, mak7 and pets, normally needed for plasmid replication. Strains mutant in mak7 and carrying the bypass mutation (mak7–1 KRB1) are isolated as frequent K+R+ sectors of predominantly K-R - segregants from crosses of mak7–1 with a wild-type killer. All KRB1 mutations isolated in this way are inherited as single dominant centromere-linked chromosomal changes. They define a new centromere. KRB1 is not a translational suppressor. KRB1 strains contain a genetically normal killer plasmid and ds RNA species approximately the same in size and amount as do wild-type killers. Bypass of both mak7 and pets by one mutation suggests that these two genes are functionally related.

Two properties of the inheritance of KRB1 indicate an unusually high reversion frequency: (1) Heat or cycloheximide (treatments known to cure strains of the wild-type killer plasmid) readily induce conversion of mak7–1 KRB1 strains from killers to nonkillers with concomitant disappearance of KRB1 as judged by further crosses, and (2) mating two strains of the type mak7–1 KRB1 with each other yields mostly 2 K+R+: 2 K-R- segregation, although the same KRB1 mutation and the same killer plasmid are present in both parents.

  相似文献   

2.
Wickner RB 《Genetics》1977,87(3):441-452
Strains of Saccharomyces cerevisiae carrying a 1.4 x 106 dalton double-stranded (ds) RNA in virus-like particles (the killer plasmid or virus) secrete a toxin that is lethal to strains not carrying this plasmid (virus). The mak10 gene is one of 24 chromosomal genes (called pets, mak1, mak2,...) that are needed to maintain and replicate the killer plasmid. We report here isolation of spontaneous and induced mutants in which the killer plasmid is maintained and replicated in spite of a defect in the mak10 gene. The bypass (or suppressor) mutations in these strains are in the mitochondrial genome. Respiratory deficiency produced by various chromosomal pet mutations, by chloramphenicol, or by antimycin A, does not bypass the mak10–1 mutation. Several spontaneous mak10–1 killer strains have about 12-fold more of the killer plasmid ds RNA than do wild-type killers. Although the absence of mitochondrial DNA bypasses mak10–1, it does not bypass pets–1, mak1–1, mak3–1, mak4–1, mak5–1, mak6–1, mak7–1, or mak8–1.  相似文献   

3.
The killer character of yeast is determined by a 1.4 x 106 molecular weight double-stranded RNA plasmid and at least 12 chromosomal genes. Wild-type strains of yeast that carry this plasmid (killers) secrete a toxin which is lethal only to strains not carrying this plasmid (sensitives). ——— We have isolated 28 independent recessive chromosomal mutants of a killer strain that have lost the ability to secrete an active toxin but remain resistant to the effects of the toxin and continue to carry the complete cytoplasmic killer genome. These mutants define two complementation groups, kex1 and kex2. Kex1 is located on chromosome VII between ade5 and lys5. Kex2 is located on chromosome XIV, but it does not show meiotic linkage to any gene previously located on this chromosome. ——— When the killer plasmid of kex1 or kex2 strains is eliminated by curing with heat or cycloheximide, the strains become sensitive to killing. The mutant phenotype reappears among the meiotic segregants in a cross with a normal killer. Thus, the kex phenotype does not require an alteration of the killer plasmid. ——— Kex1 and kex2 strains each contain near-normal levels of the 1.4 x 106 molecular weight double-stranded RNA, whose presence is correlated with the presence of the killer genome.  相似文献   

4.
Homology of plasmids in strains of unicellular Cyanobacteria.   总被引:17,自引:0,他引:17  
Six strains of unicellular cyanobacteria were examined for the presence of plasmids. Analysis of lysates of these strains by CsCl-ethidium bromide density centrifugation yielded a major chromosomal DNA band and a minor band containing covalently closed circular plasmid DNA, as shown by electron microscopy and agarose gel electrophoresis. The sizes of the various plasmid species were determined; in each of the Synechococcus strains 6301, 6707, and 6908 two plasmid species were found with molecular weights of 5.3 × 106 and 32.7 × 106. Synechococcus strain 7425 had two plasmids of molecular weight 5.4 × 106 and 24 × 106. Synechococcus strain 6312 and Synechocystis strain 7005 each contained one plasmid species with molecular weight of 15.9 × 106 and 2.0 × 106, respectively. Restriction enzyme analysis revealed identical cleavage patterns for the plasmids of identical molecular weight.  相似文献   

5.
Summary Mutations in the pet18 gene of Saccharomyces cerevisiae (formerly denoted pets) confer three phenotypes on mutant strains: (i) inability to respire (petite), (ii) inability to maintain the double-stranded RNA killer plasmid (sensitive), and (iii) temperature sensitivity for growth. We find that pet18 mutants lack mitochondrial DNA. However, despite their inability to maintain the killer RNA plasmid and mitochondrial DNA, pet18 mutants still can carry the other yeast plasmids, [URE3-1], [PSI], and 2-micron DNA. The temperature sensitivity of the pet18 mutants is not expressed as a selective defect in total DNA, RNA, or protein synthesis.  相似文献   

6.
Reed B. Wickner 《Cell》1980,21(1):217-226
Saccharomyces strains of two types (K1+R1+ and K2+R2+) kill each other and K?R?-sensitive strains by secreting protein toxins. K1 killer strains carry a 1.25 × 106 dalton double-stranded RNA plasmid, [KIL-k1], while K2 killers have a 1.0 × 106 dalton double-stranded RNA plasmid, [KIL-k1]. Mating [KIL-k1] haploids with [KIL-k2] haploids yields only [KIL-k1] diploids, that is, [KIL-k1] excludes [KIL-k2]. [EXL], a new non-Mendellan genetic element from a nonkiller strain, excludes [KIL-k2] but does not exclude [KIL-k2]. A second new non-Mendelian genetic element, called [NEX], when present prevents [EXL] from excluding [KIL-k2]. [NEX] does not prevent [KIL-k1] or [KIL-s1] (a suppressive mutant of [KIL-k1]) from excluding [KIL-k2]. A chromosomal gene, called MKT1, is needed for maintenance of [KIL-k2] if [NEX] is present. In the absence of [NEX], [KIL-k2] does not need MKT1. [KIL-k1] does not need MKT1 even if [NEX] is present. [EXL] replication depends on at least the products of MAK1, MAK3, MAK10and PET18. [NEX]replication depends on MAK3 but is independent of MAK4, MAKE, MAK27 and MKT1.  相似文献   

7.
Incorporation of 32P into mature chloroplast rRNA species of MW 1.1 × 101 and 0.56 × 106 has been followed in Euglena gracilis by pulse and pulse chase experiments. Mature rRNA species have precursors of MW 1.16 × 106 ± 0.01 × 106 and 0.64 × 106 ± 0.01 × 106 resp. These precursors have base composition and hydridization properties similar to those of the mature, rRNA species. No evidence of a single common precursor to these molecules was found. Rifampicin did not affect the synthesis of chloroplast rRNA.  相似文献   

8.
Reed B. Wickner 《Genetics》1978,88(3):419-425
The double-stranded RNA killer plasmid gives yeast strains carrying it both the ability to secret a protein toxin and immunity to that toxin. This report describes a new series of mutants in chromsomal genes needed for killer plasmid maintenance (mak genes). These mutants comprise 12 complementation groups. There are a total of at least 26 mak genes. Each mak gene product is needed for plasmid maintenance in diploids as well as in haploids. None of these mak mutations prevent the killer plasmid from entering the mak- spores in the process of meiotic sporulation. Complementation between mak mutants can be performed by mating meitoic spores from a makx/+ plasmid-carrying diploid with a maky haploid. If x = y, about half the diploid clones formed lose the killer plasmid. If x not equal to y, complementation occurs, and all of the diploid clones are killers.  相似文献   

9.
Koltin Y  Kandel JS 《Genetics》1978,88(2):267-276
The double-stranded RNA content, the production of inactive killer protein, and the presence of virus-like particles were examined in induced nonkiller mutants and nonkiller progeny from a cross between a killer strain and a sensitive strain. A correlation between the loss of the 0.7 x 106 daltons dsRNA of the Ustilago maydis P6 virus and the lack of synthesis of the killer protein was established. In vitro and in vivo complementation between nonkiller strains provide additional support for the suggestion that the 0.7 x 106 daltons dsRNA is related to the killer function. The coding capacity of the various species of dsRNA is discussed in relation to their possible function.  相似文献   

10.
The K1 killer plasmid of Saccharomyces cerevisiae is a 1.5-megadalton linear double-stranded ribonucleic acid molecule. Using simplified screening and complementation procedures, we have isolated mutants in three chromosomal genes that are temperature sensitive for killer plasmid maintenance or replication. One of these genes, mak28-1, was located on chromosome X. Two of the temperature-sensitive mutants rapidly lost the wild-type killer plasmid of A364A during spore germination and outgrowth at nonpermissive temperatures, but during vegetative growth, they only lowered the plasmid copy number. These two mutants did not lose two other wild-type K1 killer plasmids, indicating a heterogeneity of the killer plasmids in laboratory yeast strains.  相似文献   

11.
12.
A fragmentation process occurs in 26 S ribosomal RNA of mature cytoplasmic ribosomes of Musca carnaria. It consists of the sequential appearance of three “hidden breaks” that fragment 26 S rRNA (Mr = 1.42 × 106) into four pieces with approximate molecular weights of 0.68 × 106, 0.35 × 106, 0.29 × 106 and 0.096 × 106, respectively. This fragmentation was not observed in 17 S rRNA (Mr = 0.74 × 106).Extremely mild treatment of newly assembled ribosomes with pancreatic RNAase reproduces the 26 S rRNA fragmentation phenomenon in vitro in the same way as it occurs in vivo.This evidence is discussed in relation to the secondary structure of 26 S rRNA and its binding with specific ribosomal proteins.  相似文献   

13.
The K1 killer virus (or plasmid) of Saccharomyces cerevisiae is a noninfectious double-stranded RNA genome found intracellularly packaged in an icosahedral capsid. This genome codes for a protein toxin and for resistance to that toxin. Defective interfering virus mutants are deletion derivatives of the killer virus double-stranded RNA genome; such mutants are called suppressive. Unlike strains carrying the wild-type genome, strains with these deletion derivatives are neither toxin producers nor toxin resistant. If both the suppressive and the wildtype virus are introduced into the same cell, most progeny become toxin-sensitive nonkillers (J. M. Somers, Genetics 74:571-579, 1973). Diploids formed by the mating of a killer with a suppressive strain were grown in liquid culture, and RNA was extracted from samples taken up to 41 generations after the mating. The ratio of killer RNA to suppressive RNA decreased with increasing generations; by 41 generations the killer RNA was barely detectable. The copy numbers of the suppressive genome and its parental killer were virtually the same in isogenic strains, as were the growth rates of diploid strains containing either virus alone. Therefore, suppressiveness, not being due to segregation or overgrowth by faster growing segregants, is likely due to preferential replication or maintenance of the suppressive genome. Three suppressive viruses, all derivatives of the same killer virus (T. K. Sweeney et al., Genetics 84:27-42, 1976), did not coexist stably. The evidence strongly indicates that the largest genome of the three slowly suppressed both of the smaller genomes, showing that larger genomes can suppress smaller ones and that suppression can occur between two suppressives. Of 48 isolates of strains carrying the suppressive viruses, 5 had newly detectable RNA species, all larger than the original suppressive genomes. At least seven genes necessary for maintenance of the wild-type killer virus (MAK genes) were needed by a suppressive mutant. No effect of ski mutations (affecting regulation of killer virus double-stranded RNA replication) on suppressiveness was observed.  相似文献   

14.
Messenger ribonucleoprotein particles in unfertilized sea urchin eggs   总被引:2,自引:0,他引:2  
The properties of poly(A)-containing messenger ribonucleoprotein particles (mRNPs) from unfertilized sea urchin eggs isolated under various ionic conditions were studied. Poly(A)-containing RNPs of eggs sediment with a modal value of 60–65 S under all conditions used. However, buoyant densities vary strikingly with conditions of particle preparation. Deproteinized poly(A)-containing mRNA has an average molecular weight of about 1 × 106. RNPs prepared in 0.35 M Na+ in the absence of Mg2+ contain an average of 0.25 × 106 daltons of protein, while particles prepared in 0.05 M Na+ in the absence of Mg2+ contain 0.35 to 11 × 106 daltons of protein per RNA molecule. Particles prepared in 0.35 M Na+ plus 5 mM Mg2+ contain 1.4 × 106 daltons of protein suggesting that Mg2+ may be necessary for maintenance of RNP intergrity if high Na+ concentrations are used to prevent nonspecific RNA-protein interactions. Particles prepared in 0.35 M K+ contain 0.9 × 106 daltons of protein in both Mg2+ and EDTA. Mg2+ does not cause significant aggregation of particles, since the size of RNA extracted from RNPs is proportional to RNP sedimentation rate. Monovalent cation concentrations normally used in analysis of RNPs by sedimentation cause deproteinized poly(A)-containing RNA to sediment with abnormally high sedimentation coefficients, indicating that high sedimentation rates alone do not indicate that RNA is contained in an RNP.  相似文献   

15.
This paper describes the identification and functional role of late gene products of bacteriophage Mu, including an analysis of the structural proteins of the Mu virion.In vitro reconstitution of infectious phage particles has shown that four genes (E, D, I, J) control the formation of phage heads and that a cluster of eight genes (K, L, M, N, P, Q, R, S) controls the formation of phage tails.Sodium dodecyl sulphate/polyacrylamide gel electrophoresis of Mu polypeptides synthesized in Escherichia coli minicells infected by Mu phages carrying amber mutations in various late genes has resulted in the identification of the products of gene C (15.5 × 103Mr); H (64 × 103Mr); F (54 × 103Mr); G (16 × 103Mr); L (55 × 103Mr); N (60 × 103Mr); P (43 × 103Mr) and S (56 × 103Mr). Minicells infected with λpMu hybrid phages and deletion mutants of Mu were used to identify polypeptides encoded by the V-β region of the Mu genome. These are the products of genes V, W or R (41.5 × 103Mr, and 45 × 103Mr); U (20.5 × 103Mr) and of genes located in the β region (24 × 103Mr (gpgin) and 37 × 103Mr (possibly gpmom)).Analytical separation of the proteins of the Mu virion revealed that it consists of a major head polypeptide with a molecular weight of 33 × 103, a second head polypeptide of 54 × 103 (gpF) and two major tail polypeptides with molecular weights of 55 × 103 and 12.5 × 103 (gpL and gpY, respectively). In addition, there are five minor components of the tail (including gpN, gpS and gpU) and approximately seven minor components of the head structure of the virion (including gpH).  相似文献   

16.
17.
RNA extracted by cold phenol from the large cytoplasmic ribosomal subunit of the trypanosomatid flagellate Crithidia fasciculata and analyzed by polyacrylamide gel electrophoresis at 4 °C consisted of one species with a molecular weight of 1.3 × 106 (relative to ribosomal RNA from E. coli MRE 600). When extracted with hot phenol (65 °C), the large ribosomal subunit gave rise to two components with molecular weights of 0.72 and 0.56 × 106. On heating for 60 s, followed by rapid cooling, the single cold-phenol-extracted 1.30 × 106-dalton species completely dissociated into two components of molecular weights 0.72 and 0.56 × 106, present in equimolar amounts. When analyzed by polyacrylamide-agarose gel electrophoresis in the presence of SDS, RNA extracted by cold phenol from the large cytoplasmic ribosomal subunit consisted of three components of molecular weights 1.3, 0.72, and 0.56 × 106, present in apparently equimolar amounts. RNA from the small cytoplasmic ribosomal subunit consisted of one species with a molecular weight of 0.84 × 106, independent of extraction or analytical conditions. It is proposed that under high salt and low temperature conditions, the large ribosomal RNA molecule is held together by its secondary structure, and that denaturing extraction or analytical conditions reveal an otherwise “hidden” lesion present in the molecule in vivo.  相似文献   

18.
A small circular supercoiled DNA molecule species with a molecular weight of about 5.4 × 106 has been isolated from the extreme thermophile Thermus thermophilus HB8. This plasmid (pTT1) has a G plus C content of 68%, similar to that of the host chromosome. The superhelix density is the same as that of bacteriophage PM2 DNA. A physical map of the plasmid has been obtained using restriction endonucleases.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号